

Operation Manual

Goodrive350-19 Series VFD for Crane

No.	Change description	Version	Release date
1	First release.	V1.0	March 2020
	Added section 5.2.5 Switching from lifting in closed-loop vector control to open-loop vector control.		
	 Added section 5.5 Tower crane rotating without using an eddy current controller in space voltage vector control. 		
	Added section 5.11 Brake.		
	Added section 5.12 Zero servo.		
	Added section 5.13 Anti-sway.		
	Added section 5.14.4 Master/slave switchover.		
2	Changed group P29 to group P89.	V1.1	April 2021
	Added groups P85, P86, and P94.		
	Added chapter 11 CW and SW module for port crane applications.		
	Added section A.5.6 CAN-NET two-in-one communication card (EC-TX511B).		
	Added the rope tracking function to group P91.		
	Added overspeed protection, stalling protection, and weighing functions to P92.		
	Updated P90.00 application macro.		
	Updated application macro parameters in sections 5.1, 5.2, 5.3, and 5.5.		
	Updated commissioning procedure descriptions in section 5.13.		
	Added section 5.14 Sway reducing.		
3	Added section 5.5 Wind resistance	V1.2	March 2022
3	Added section 5.18.3 Using PTC	V 1.2	Maich 2022
	Added fault severity group parameters to group P11.		
	 Added function codes about mapping of PZDs sent or received through PROFIBUS DP, CANopen, PROFINET, and EtherNet IP. 		
	Added section A.5.6 EtherNet IP communication card.		

No.	Change description	Version	Release date
	 Added section A.5.8 216 communication card and updated parameters in P87 accordingly. Added sections A.5.9 Modbus TCP communication card, A.7.1 4G communication card, and A.8.1 24V power supply card. 		
4		V1.3	March 2025
	 Deleted original section 10.4.3 Command code: 08H, diagnostic functions, and the content regarding Bluetooth communication card in Appendix A Expansion card. 		

Preface

Thank you for choosing Goodrive350-19 series variable-frequency drives (VFDs) for cranes.

If not otherwise specified in this manual, the VFD always indicates Goodrive350-19 series VFD, which is a new generation of VFD that INVT develops for cranes by using advanced control technologies based on more than ten-year accumulative hoisting-industry experience. The VFD achieves excellent torque performance by integrating various special functions, including brake control, zero servo, quick stop, master/slave control, switchover between three sets of motor parameters, pre-magnetizing, light-load speed acceleration, anti-sway and sway reducing for horizontal moving, tower crane slewing without using eddy current control, reverse braking, rope detection, and travel limit, to ensure the safety, reliability, and high efficiency of the machinery. The VFD can be widely used to drive the mechanisms such as about lifting, tilting, luffing, long traveling, cross traveling, slewing, and grabbing in hoisting machinery.

In order to meet diversified customer demands, the VFD provides abundant expansion cards including hoisting-oriented process card, PG card, communication card and I/O card to achieve various functions as needed. Each VFD can be installed with three expansion cards at most.

The PG card supports a variety of common encoders including incremental encoders, resolver-type encoders, sine-cosine encoders, and SSI absolute encoders. In addition, it also supports pulse reference and frequency-division output. The PG card adopts digital filter technology to improve EMC performance and to realize stable transmission of the encoder signal over a long distance. It is equipped with the encoder disconnection detection function to contain the impact of system faults.

The VFD supports mainstream bus and control automation communication modes, including Modbus, CANopen, PROFIBUS-DP, PROFINET, EtherNet IP, and EtherCAT, and thus can be seamlessly interconnected with various crane control systems. You can connect the VFD to the Internet with optional wireless communication cards so as to monitor it anywhere any time through mobile APP.

The VFD uses high power density design. The VFD models in some power ranges carry built-in DC reactors and braking units to save installation space. Through overall EMC design, the VFD can satisfy the low noise and low electromagnetic interference requirements to cope with challenging grid, temperature, humidity and dust conditions, thus greatly improving product reliability.

This manual instructs you how to install, wire, set parameters for, diagnose and remove faults for, and maintain the VFD, and also lists related precautions. Before installing the VFD, read through this manual carefully to ensure the proper installation and running with the excellent performance and powerful functions into full play.

If the product is ultimately used for military affairs or weapon manufacture, comply with the export control regulations in the Foreign Trade Law of the People's Republic of China and complete related formalities.

The manual is subject to change without prior notice.

Contents

1 Safety precautions		1
1.1 What this chapte	er contains	1
1.2 Safety definition.		1
1.3 Warning symbols	s	1
1.4 Safety guidelines	s	2
1.4.1 Delivery a	nd installation	2
1.4.2 Commissi	oning and running	3
1.4.3 Maintenar	nce and component replacement	4
1.4.4 Disposal		4
2 Quick startup		5
2.1 What this chapte	er contains	5
2.2 Unpacking inspe	ection	5
2.3 Checking before	use	5
2.4 Environment che	ecking	5
2.5 Checking after in	nstallation	6
2.6 Basic commission	oning	6
3 Product overview		8
3.1 What this chapte	er contains	8
3.2 Basic principles		8
3.3 Product specifica	ations	10
3.4 Product namepla	ate	17
3.5 Model designation	on code	17
3.6 Product ratings		18
3.7 Structure		21
4 Installation guidelines	S	22
4.1 What this chapte	er contains	22
4.2 Mechanical insta	allation	22
4.2.1 Installation	n environment	22
4.2.2 Installation	n direction	23
4.2.3 Installation	n method	24
4.2.4 Installing of	one VFD	25
4.2.5 Multiple-V	FD installation	25
4.2.6 Vertical ins	stallation	26
4.2.7 Tilted insta	allation	27
4.3 Standard wiring	of the main circuit	28
4.3.1 Main circu	ıit wiring diagram	28
4 3 2 Main circu	uit terminal diagram	29

	4.3.3 Wiring procedure for main circuit terminals	33
	4.4 Standard wiring of the control circuit	34
	4.4.1 Wiring diagram of basic control circuit	34
	4.4.2 Input/output signal connection diagram	36
	4.4.3 Control circuit wiring of I/O expansion card 2	38
	4.5 Wiring protection	40
	4.5.1 Protecting the VFD and input power cable in case of short circuit	40
	4.5.2 Protecting the motor and motor cable in case of short circuit	40
	4.5.3 Protecting the motor against thermal overload	40
	4.5.4 Bypass connection	40
5 (Commissioning guidelines	41
	5.1 Lifting	41
	5.1.1 Commissioning the mechanical holding brake function (P90.04=1)	41
	5.1.2 Commissioning steel wire rope (such as in a tower crane) lifting applications	54
	5.1.3 Commissioning gear-rack lifting applications (such as in elevators and hoists)	59
	5.1.4 Commissioning lifting applications in mine hoists, winches, and drawworks	64
	5.1.5 Commissioning the zero servo function	70
	5.1.6 Height measuring	74
	5.1.7 Commissioning the conical motor function	85
	5.2 Commissioning horizontal moving	87
	5.2.1 Wiring	87
	5.2.2 Commissioning procedure	87
	5.2.3 Horizontal moving application macro parameters (P90.00=3)	87
	5.2.4 Points for attention	88
	5.2.5 Commissioning anti-sway	89
	5.3 Commissioning tower crane slewing	95
	5.3.1 Wiring	95
	5.3.2 Commissioning tower crane slewing without using an eddy current controller	95
	5.3.3 Commissioning tower crane slewing that uses an eddy current controller	99
	5.4 Commissioning the electric potentiometer	104
	5.4.1 Wiring	104
	5.4.2 Commissioning procedure	104
	5.4.3 Electric potentiometer commissioning parameters	105
	5.5 Master/slave control	106
	5.5.1 Function description	106
	5.5.2 Terminal master/slave function	108
	5.5.3 Master/slave communication	112
	5.5.4 Master/slave switchover	117
	5.5.5 User-defined application macros	119
	5.6 Motor and macro switchover	124

5.6.1 Function description	124
5.6.2 Description about switching from motor 2 to motor 3	125
5.6.3 Motor and macro switchover parameters	125
5.6.4 Terminal-based motor and macro switchover flowchart	127
5.6.5 Shortcut multi-motor speed control mode switchover	128
5.6.6 PG card switchover	129
5.7 Temperature measuring	130
5.7.1 Using PT100/PT1000	130
5.7.2 Using KTY84	133
5.7.3 Using PTC	134
6 Basic operation guidelines	136
6.1 What this chapter contains	136
6.2 LED keypad introduction	136
6.3 LED keypad display	138
6.3.1 Displaying fault information	138
6.3.2 Editing function codes	138
6.4 Operating the VFD through the LED keypad	139
6.4.1 Modifying function codes	139
6.4.2 Setting a password for the VFD	140
6.4.3 Viewing VFD status	141
6.5 Basic operation description	141
6.5.1 What this section describes	141
6.5.2 Common commissioning procedure	141
6.5.3 Vector control	141
6.5.4 Space voltage vector control mode	141
6.5.5 Torque control	141
6.5.6 Motor parameters	141
6.5.7 Start/stop control	141
6.5.8 Frequency setting	141
6.5.9 Analog input	141
6.5.10 Analog output	141
6.5.11 Digital input	141
6.5.12 Digital output	141
6.5.13 Simple PLC	141
6.5.14 Multi-step speed running	142
6.5.15 Graded multi-step speed reference	144
6.5.16 Local encoder input	145
6.5.17 Position control	145
6.5.18 Fault handling	145
7 Function parameters	146

7.1 What this chapter contains	146
7.2 Function parameter list	146
Group P00—Basic functions	147
Group P01—Start and stop control	151
Group P02—Parameters of motor 1	158
Group P03—Vector control of motor 1	161
Group P04—V/F control	168
Group P05—Input terminal functions	177
Group P06—Output terminal functions	186
Group P07—Human-machine interface	192
Group P08—Enhanced functions	199
Group P09—PID control	209
Group P10—Simple PLC and multi-step speed control	213
Group P11—Protection parameters	217
Group P12—Parameters of motor 2	227
Group P13—SM control	229
Group P14—Serial communication	231
Group P15—Communication expansion card 1 functions	236
Group P16—Communication expansion card 2 functions	241
Group P17—Status viewing	250
Group P18—Status viewing in closed-loop control	255
Group P19—Expansion card status viewing	258
Group P20—Encoder of motor 1	260
Group P21—Position control	264
Group P23—Vector control of motor 2	274
Group P24—Encoder of motor 2	276
Group P25—I/O card input functions	280
Group P26—I/O card output functions	283
Group P27—Programmable expansion card functions	286
Group P28—Master/slave control	289
Group P85—Anti-sway control	292
Group P86—Slewing control	293
Group P89—Parameters of motor 3	297
Group P90—Functions special for cranes	299
Group P91—Functions special for cranes	309
Group P92—Hoisting protection function group 3	323
Group P93—Closed-loop hoisting functions	334
Group P94—Hoisting status display	
8 Troubleshooting	348
8.1 What this chapter contains	348

	8.2 Indications of alarms and faults	348
	8.3 Fault reset	348
	8.4 Fault history	348
	8.5 Faults and solutions	348
	8.5.1 Faults and solutions	348
	8.5.2 Alarms and solutions	359
	8.5.3 Other status	361
	8.6 Analysis on common faults	362
	8.6.1 Motor fails to work	362
	8.6.2 Motor vibrates	363
	8.6.3 Overvoltage	364
	8.6.4 Undervoltage	364
	8.6.5 Motor overheating	365
	8.6.6 VFD overheating	366
	8.6.7 Motor stalls during ACC	367
	8.6.8 Overcurrent	368
	8.7 Countermeasures on common interference	369
	8.7.1 Interference on meter switches and sensors	369
	8.7.2 Interference on RS485 communication	370
	8.7.3 Failure to stop and indicator shimmering due to motor cable coupling	371
	8.7.4 Leakage current and interference on RCD	371
	8.7.5 Live device housing	372
9 N	laintenance	374
	9.1 What this chapter contains	374
	9.2 Periodical inspection	374
	9.3 Cooling fan	376
	9.4 Capacitor	377
	9.4.1 Capacitor reforming	377
	9.4.2 Electrolytic capacitor replacement	378
	9.5 Power cable	379
10	Communication protocol	380
	10.1 What this chapter contains	380
	10.2 Modbus protocol introduction	380
	10.3 Application of Modbus	380
	10.3.1 RS485	380
	10.3.2 RTU mode	383
	10.4 RTU command code and communication data	386
	10.4.1 Command code 03H, reading N words (continuously up to 16 words)	386
	10.4.2 Command code 06H, writing a word	388
	10.4.3 Command code 10H. continuous writing	389

10.4.4 Data address definition	390
10.4.5 Fieldbus scale	394
10.4.6 Error message response	395
10.4.7 Read/Write operation examples	397
10.4.8 Common communication faults	401
11 Short description of communication PZD	402
11.1 Dedicated CW (P16.72 ones place=1 or 3)	402
11.2 Dedicated SW (P16.72 ones place=1 or 3)	403
11.3 Short description of CANopen/PROFIBUS DP communication PZD	404
11.4 Short description of PROFINET/EtherNet IP communication PZD	408
Appendix A Expansion card	410
A.1 Model definition	410
A.2 Dimensions and installation	419
A.3 Wiring	421
A.4 IO card (EC-IO501-00)	422
A.5 Communication cards	424
A.5.1 WIFI communication card (EC-TX502)	424
A.5.2 PROFIBUS-DP communication card (EC-TX503D)	426
A.5.3 Ethernet communication card (EC-TX504)	428
A.5.4 CANopen/CAN master/slave control communication card (EC-TX505D)	428
A.5.5 PROFINET communication card (EC-TX509C)	430
A.5.6 EtherNet IP communication card (EC-TX510)	432
A.5.7 CAN-NET two-in-one communication card (EC-TX511B)	433
A.5.8 Modbus TCP communication card (EC-TX515)	434
A.5.9 EtherCAT communication card (EC-TX508)	435
A.6 PG expansion cards	439
A.6.1 Sin/Cos PG card (EC-PG502)	439
A.6.2 UVW incremental PG card (EC-PG503-05)	441
A.6.3 Resolver PG card (EC-PG504-00)	444
A.6.4 Multi-function incremental PG card (EC-PG505-12)	446
A.6.5 Simplified incremental PG card (EC-PG507-12B)	450
A.6.6 24V simplified incremental PG card (EC-PG507-24)	451
A.6.7 Absolute encoder SSI communication PG card (EC-PG508-05B)	455
A.7 IoT expansion card	459
A.7.1 4G expansion card (EC-IC502-2)	459
A.8 Power supply expansion cards	460
A.8.1 24V power supply expansion card (EC-PS501-24)	460
Appendix B Technical data	461
B.1 What this chapter contains	461
B 2 Derated application	461

	B.2.1 Capacity	461
	B.2.2 Derating	461
	B.3 Grid specifications	462
	B.4 Motor connection data	462
	B.5 Application standards	462
	B.5.1 CE marking	463
	B.5.2 EMC compliance declaration	463
	B.6 EMC regulations	463
	B.6.1 VFD category of C2	464
	B.6.2 VFD category of C3	464
Аp	pendix C Dimension drawings	465
	C.1 What this chapter contains	465
	C.2 LED keypad	465
	C.2.1 Structure diagram	465
	C.2.2 Keypad mounting bracket	465
	C.3 LCD keypad	466
	C.3.1 Structure diagram	466
	C.3.2 Keypad mounting bracket	466
	C.4 VFD structure	467
	C.5 Dimensions of AC 3PH 380V (-15%)-440V (+10%)	468
	C.5.1 Wall mounting dimensions	468
	C.5.2 Flange mounting dimensions	470
	C.5.3 Floor mounting dimensions	472
	C.6 Dimensions of AC 3PH 520V (-15%)–690V (+10%)	
	C.6.1 Wall-mounting dimensions	473
	C.6.2 Flange mounting dimensions	474
	C.6.3 Floor mounting dimensions	475
Aр	ppendix D Optional peripheral accessories	477
	D.1 What this chapter contains	477
	D.2 External wiring	477
	D.3 LCD keypad	478
	D.3.1 LCD keypad display	482
	D.3.2 Operating the VFD through the LCD keypad	484
	D.4 Power supply	
	D.5 Cable	497
	D.5.1 Power cable	497
	D.5.2 Control cable	498
	D.5.3 Recommended cable size	499
	D.5.4 Cable arrangement	
	D.5.5 Insulation inspection	501

	D.6 Breaker and electromagnetic contactor	501
	D.7 Reactor	503
	D.7.1 AC 3PH 380V(-15%)-440V(+10%)	504
	D.7.2 AC 3PH 520V(-15%)-690V(+10%)	506
	D.8 Filter	507
	D.8.1 Filter model description	508
	D.8.2 Filter model selection	509
	D.9 Braking system	510
	D.9.1 Braking component selection	510
	D.9.2 Braking resistor cable selection	514
	D.9.3 Braking resistor installation	514
	D.10 Regenerative unit	515
	D.10.1 Regenerative unit installation and wiring	515
	D.10.2 Regenerative unit	515
Αp	pendix E STO function description	518
	E.1 STO function logic table	518
	E.2 STO channel delay description	518
	E.3 STO function installation checklist	519
Αp	pendix F Further information	520
	F.1 Product and service queries	
	F.2 Feedback on INVT VFD manuals	520
	F.3 Documents on the Internet	520

1 Safety precautions

1.1 What this chapter contains

Read this manual carefully and follow all safety precautions before moving, installing, operating and servicing the product. Otherwise, equipment damage or physical injury or death may be caused.

We shall not be liable or responsible for any equipment damage or physical injury or death caused due to your or your customers' failure to follow the safety precautions.

1.2 Safety definition

Danger: Severe personal injury or even death can result if related requirements are not followed.

Warning: Personal injury or equipment damage can result if related requirements are not followed.

Note: Actions taken to ensure proper running.

Trained and qualified professionals: People operating the equipment must have received professional electrical and safety training and obtained the certificates, and must be familiar with all steps and requirements of equipment installing, commissioning, running and maintaining and capable to prevent any emergencies.

1.3 Warning symbols

Warnings caution you about conditions that can result in severe injury or death and/or equipment damage and advice on how to prevent dangers. The following table lists the warning symbols in this manual.

Symbol	Name	Description	Abbreviation
Danger	Danger	Severe personal injury or even death can result if related requirements are not followed.	A
Marning	Warning	Personal injury or equipment damage can result if related requirements are not followed.	\wedge
Forbid		The PCBA may be damaged if related requirements are not followed.	
Hot	Hot sides	Do not touch. The VFD base may become hot.	
<u></u> \$\sqrt{\delta}\$ 5 min	Electric shock	As high voltage still presents in the bus capacitor after power off, wait for at least five minutes (or 15 min / 25 min, depending on the warning symbols on the machine) after power off to prevent electric shock.	<u></u> ♦ 5 min
	Read manual	Read the operation manual before operating the equipment.	

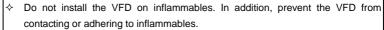
Symbol	Name	Description	Abbreviation
Note	Note	Steps to take for ensuring the proper running of the product.	Note

1.4 Safety guidelines

- Only trained and qualified professionals are allowed to carry out related operations.
- Do not perform wiring, inspection or component replacement when power supply is applied. Ensure all the input power supplies have been disconnected before wiring or inspection, and wait for at least the time designated on the VFD or until the DC bus voltage is less than 36V. The minimum waiting time is listed in the following.

•	VFD model	Minimum waiting time
380V	1.5kW-110kW	5 minutes
380V	132kW-315kW	15 minutes
380V	355kW and higher	25 minutes
660V	22kW-132kW	5 minutes
660V	160kW-355kW	15 minutes
660V	400kW-630kW	25 minutes

Do not modify the VFD unless authorized; otherwise fire, electric shock or other injury may result.



The base may become hot when the machine is running. Do not touch. Otherwise, you may get burnt.

The electrical parts and components inside the VFD are electrostatic sensitive. Take measurements to prevent electrostatic discharge when performing related operations.

1.4.1 Delivery and installation

- Connect the optional braking parts (such as braking resistors, braking units or feedback units) according to the wiring diagrams.
- ♦ Do not run the VFD if it is damaged or incomplete.
- Do not contact the VFD with damp objects or body parts. Otherwise, electric shock may result.

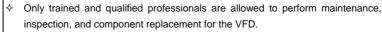
Note:

 Select appropriate tools for VFD delivery and installation to ensure the safe and proper running and avoid physical injury or death. To ensure personal safety, take mechanical protective measures like wearing safety shoes and working uniforms.

- Protect the VFD against physical shock or vibration during the delivery and installation.
- Do not carry the VFD only by its front cover as the cover may fall off.
- The installation site must be away from children and other public places.
- Use the VFD in proper environments. (For details, see section 4.2.1 Installation environment.)
- Prevent the screws, cables and other conductive parts from falling into the VFD.
- As leakage current of the drive during running may exceed 3.5mA, ground properly and ensure
 the grounding resistance is less than 10Ω. The conductivity of PE grounding conductor is the
 same as that of the phase conductor. The cross-sectional area of the PE grounding conductor for
 30kW and higher models can be slightly smaller than the recommended cross-sectional area
 value.
- R, S, and T are the power input terminals, while U, V, and W are the output motor-connection terminals. Connect the input power cables and motor cables properly; otherwise, the VFD may be damaged.

1.4.2 Commissioning and running

- Cut off all power supplies connected to the VFD before terminal wiring, and wait for at least the time designated on the VFD after disconnecting the power supplies.
- High voltage presents inside the VFD during running. Do not carry out any operation on the VFD during running except for keypad setup. The control terminals of 3PH AC 660V models form extra-low voltage (ELV) circuits. Therefore, you need to prevent the control terminals from connecting to accessible terminals of other devices.
- The VFD may start up by itself when P01.21 is set to 1 (restart after power off). Do not get close to the VFD and motor.


- ♦ The VFD cannot be used as an "Emergency-stop device".
- The product cannot act as an emergency brake for the motor; it is a must to install a mechanical braking device.
- During driving a permanent magnet SM, besides above-mentioned items, the following work must be done before installation and maintenance:
 - All input power supplies have been disconnected, including the main power and control power.
 - b) The permanent-magnet SM has been stopped, and the voltage on output end of the VFD is lower than 36V.
 - c) After the permanent-magnet SM has stopped, wait for at least the time designated on the VFD, and ensure the voltage between + and - is lower than 36V.

d) During operation, it is a must to ensure the permanent-magnet SM cannot run again by the action of external load; it is recommended to install an effective external braking device or cut off the direct electrical connection between the permanent-magnet SM and the VFD.

Note:

- Do not switch on or switch off the input power supplies of the VFD frequently.
- If the VFD has been stored for a long time without being used, check the capacitors, perform capacitor reforming (see chapter 10 Maintenance), and carry out pilot run for the VFD before the use.
- Close the VFD front cover before running; otherwise, electric shock may occur.

1.4.3 Maintenance and component replacement

- Cut off all power supplies connected to the VFD before terminal wiring, and wait for at least the time designated on the VFD after disconnecting the power supplies.
- During maintenance and component replacement, take measures to prevent screws, cables and other conductive matters from falling into the internal of the VFD.

Note:

- Use proper torque to tighten screws. (For details, see D.5.3 Recommended cable size.)
- During maintenance and component replacement, keep the VFD and its parts and components away from combustible materials and ensure they have no combustible materials adhered.
- Do not carry out insulation voltage-endurance test on the VFD, or measure the control circuits of the VFD with a megohmmeter.
- During maintenance and component replacement, take proper anti-static measures on the VFD and its internal parts.

1.4.4 Disposal

♦ The VFD contains heavy metals. Dispose of a scrap VFD as industrial waste.

Dispose of a scrap product separately at an appropriate collection point but not place it in the normal waste stream.

2 Quick startup

2.1 What this chapter contains

This chapter introduces the basic installation and commissioning rules that you need to follow to realize quick installation and commissioning.

2.2 Unpacking inspection

Check the following after receiving the product.

- Whether the packing box is damaged or dampened. If any problems are found, contact the local INVT dealer or office.
- Whether the model identifier on the exterior surface of the packing box is consistent with the purchased model. If any problems are found, contact the local INVT dealer or office.
- Whether the interior surface of the packing box is abnormal, for example, in wet condition, or whether the enclosure of the VFD is damaged or cracked. If any problems are found, contact the local INVT dealer or office.
- Whether the product nameplate is consistent with the model identifier on the exterior surface of the packing box. If any problems are found, contact the local INVT dealer or office.
- Whether the accessories (including the manual, keypad, and expansion card) inside the packing box are complete. If any problems are found, contact the local INVT dealer or office.

2.3 Checking before use

Check the following before using the VFD.

- Mechanical type of the load to be driven by the VFD to verify whether the VFD will be overloaded during work. Whether the power class of the product needs to be increased.
- Whether the actual running current of the motor is less than the rated current of the product.
- 3. Whether the control accuracy required by the load is the same as that is provided by the VFD.
- 4. Whether the grid voltage is consistent with the rated voltage of the VFD.
- 5. Check whether expansion cards are needed for selected functions.

2.4 Environment checking

Check the following before installing the VFD:

 Whether the actual ambient temperature exceeds 40°C. When the temperature exceeds 40°C, derate 1% for every increase of 1°C. Do not use the VFD when the ambient temperature exceeds 50°C.

Note: When the VFD is built in a cabinet, the ambient temperature is the temperature of air in the cabinet.

 Whether the actual ambient temperature is lower than -10°C. If the temperature is lower than -10°C, use heating devices. **Note:** When the VFD is built in a cabinet, the ambient temperature is the temperature of air in the cabinet

- Whether the altitude of the application site exceeds 1000m. When the installation site altitude exceeds 1000 m, derate 1% for every increase of 100m.
- Whether the actual environment humidity exceeds 90% or condensation occurs. If yes, take additional protective measures.
- Whether there is direct sunlight or biological invasion in the environment where the VFD is to be used. If yes, take additional protective measures.
- Whether there is dust or inflammable and explosive gas in the environment where the product is to be used. If yes, take additional protective measures.

2.5 Checking after installation

Check the following after the VFD installation is complete.

- Whether the input power cables and motor cables meet the current-carrying capacity requirements of the actual load.
- Whether correct accessories are selected for the VFD, the accessories are correctly and properly installed, and the installation cables meet the capacity carrying requirements of all components (including the reactor, input filter, output reactor, output filter, DC reactor, braking unit and braking resistor).
- Whether the product is installed on non-flammable materials and the heat-radiating accessories (such as the reactor and braking resistor) are away from flammable materials.
- Whether all control cables and power cables are run separately and Whether the routing complies with EMC requirement.
- Whether all grounding systems are properly grounded according to the requirements of the VFD
- Whether all the installation clearances of the VFD meet the requirements in the manual.
- Whether the installation mode conforms to the instructions in the operation manual. It is recommended that the VFD be installed uprightly.
- Whether the external connection terminals of the product are tightly fastened and the torque is appropriate.
- Whether there are screws, cables, or other conductive items left in the VFD. If yes, get them out.

2.6 Basic commissioning

Complete the basic commissioning as follows before the actual use of the VFD:

- According to the actual motor parameters, select the motor type, set motor parameters, and select the VFD control mode.
- Check whether autotuning is required. If possible, de-couple the VFD from the motor load to start dynamic parameter autotuning. If the VFD cannot be de-coupled from the load, perform

static autotuning.

- 3. Adjust the ACC/DEC time according to the actual work condition of the load.
- Perform device commissioning by means of jogging and check whether the motor rotational direction is correct. If not, change the rotation direction by swapping any two phase wires of the motor.
- 5. Set all control parameters and then perform actual run.

3 Product overview

3.1 What this chapter contains

This chapter mainly introduces the operation principles, product features, layouts, nameplates and model designation rules.

3.2 Basic principles

The VFD is used to control asynchronous AC induction motors and permanent-magnet synchronous motors. The following lists the main circuit diagrams of different VFD models. The rectifier converts 3PH AC voltage into DC voltage, and the capacitor bank of intermediate circuit stabilizes the DC voltage. The inverter converts DC voltage into AC voltage that can be used by an AC motor. When the circuit voltage exceeds the maximum limit value, external braking resistor will be connected to intermediate DC circuit to consume the feedback energy.

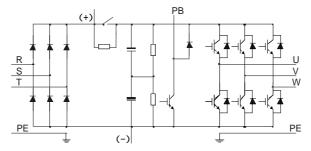


Figure 3-1 Main circuit diagram for 380V 15kW and lower VFD models

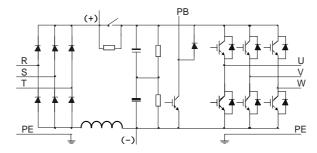


Figure 3-2 Main circuit diagram for 380V 18.5kW–22kW and 90–110kW VFD models

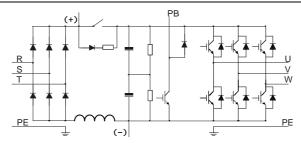


Figure 3-3 Main circuit diagram for 380V 30kW-75kW VFD models

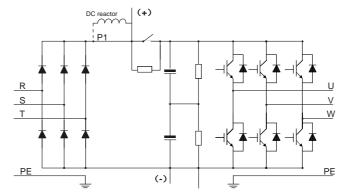


Figure 3-4 Main circuit diagram for 380V 132kW-315kW VFD models

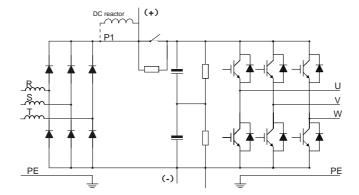


Figure 3-5 Main circuit diagram for 380V 355kW and higher VFD models

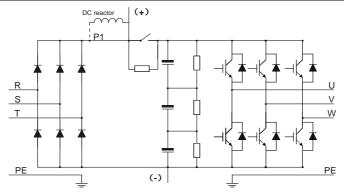


Figure 3-6 Main circuit diagram for all 660V VFD models

Note:

- The 132kW and higher VFD models can be connected to external DC reactors. Before
 connection, remove the copper bar between P1 and (+). The 132kW and higher VFD models can
 be connected to external braking unit. DC reactors and braking units are optional parts.
- The 18.5kW-110kW VFD models are equipped with built-in DC reactors.
- The 110kW and lower VFD models carry built-in braking units. The models with built-in braking units can also be connected to external braking resistors. Braking resistors are optional parts.
- The 660V VFD models can be connected to external DC reactors. Before connection, remove the
 copper bar between P1 and (+). These models can be connected to external braking unit. DC
 reactors and braking units are optional parts.

3.3 Product specifications

Table 3-1 Product specifications

Function description		Specifications
	Input voltage (V)	AC 3PH 380V (-15%)–440V (+10%) Rated voltage: 380V AC 3PH 520V (-15%)–690V (+10%) Rated voltage: 660V
Power input	Input current (A) Input frequency	See section 3.6 Product ratings.
	(Hz)	50Hz or 60Hz; Allowed range: 47–63Hz
	Input power factor	30–110kW≥0.9
Dawar	Output voltage (V)	0-Input voltage (V)
Power	Output current (A)	See section 3.6 Product ratings.
output	Output power	See section 3.6 Product ratings.

Function description		Specifications	
(kW)			
	Output frequency (Hz)	0–150Hz	
	Control mode	Space voltage vector control mode Sensorless vector control (SVC) mode Feedback vector control (FVC) mode	
	Motor type	Asynchronous motor (AM) and permanent magnetic synchronous motor (SM)	
	Speed ratio	1: 200 (SVC) 1: 1000 (FVC)	
Technical	Speed control accuracy	± 0.2% (SVC) ± 0.02% (FVC)	
control performance	Speed fluctuation	± 0.3% (SVC) ± 0.02% (FVC)	
	Torque response	< 20ms (SVC) < 10ms (FVC)	
	Torque control accuracy	10% (SVC) 5% (FVC)	
	Starting torque	For AMs: 0.25Hz/150% (SVC) For AMs: 2.5Hz/150% (SVC); 0Hz/200% (FVC)	
	Overload capacity	150% for 1 minute, 180% for 10 seconds, and 200% for 1 second	
	Braking capability	100% for long time, 120% for 1 minute, and 160% for 10 seconds	
Running	Frequency setting method	Settings can be implemented through digital, analog, pulse frequency, multi-step speed running, simple PLC, PID, Modbus communication, PROFIBUS-DP communication and so on. Settings can be combined and the setting channels can be switched.	
control performance	Automatic voltage	The output voltage can be kept constant although the grid	
periormanoc	regulation	voltage changes.	
	Fault protection	More than 30 protection functions, such as protection against overcurrent, overvoltage, undervoltage, overtemperature, phase loss, and overload.	
Specialized functions	Braking protection	The 30–110 kW VFD models provide the function of protecting against braking resistor short connection, braking unit short connection, and PB-PE short connection.	
	Brake control	Embedded with hoisting-oriented brake logic, and integrated with the torque verifying, brake feedback, zero position detection, restart after braking functions, which meet the industrial standards on the VFDs for cranes.	

Function description	Specifications		
Conical motor control	During startup, the magnetic flow is increased to release the brake. During stop, the magnetic flow is decreased to close the brake.		
Light load speed boost	In closed-loop mode, the speed can be boosted and limited at constant power status, and the speed is limited in stepped way. In open-loop mode, if the simplified speed boost way is used, the speed boosts to the set frequency in light load status; if the speed is boosted or limited in constant power status, the speed is limited in stepped way		
Zero servo	In closed-loop mode, if the VFD detects load downward slip, the VFD automatically enters the zero servo state and outputs a brake failure alarm. When a level-2 fault occurs, if load downward slip occurs, the VFD automatically resets the fault, enters the zero servo state, and outputs a brake failure alarm.		
Anti-sway for horizontal moving	By selecting different anti-sway modes, it can effectively eliminate the load swing caused by the acceleration and deceleration of the parallel traveling mechanism in different scenarios such as with rope length, without rope length, speed, and position control scenarios.		
Tower crane slewing without using an eddy current controller	Embedded curves for tower crane slewing without using an eddy current controller and anti-sway adaptation technology help to adjust the variable frequency ACC in real time so that the slewing mechanism runs steadily and responds quickly; even in the windy environment, it can eliminate the problem that the mechanism is easy to slide in the downwind is easy to slide and it cannot reach the given speed in the upwind.		
Loose rope protection (only in closed-loop mode)	If the loose rope state is detected during the hook runs down, the VFD reports a fault or alarm. This eliminates the safety hazards caused by hanging or squatting in operation.		
Upward or downward position limit	The function is used to limit the crane to run within the specified range. The VFD enables emergency stop and reports an alarm once the range is exceeded.		
Upward or downward DEC position	When the deceleration signal is valid, the running speed of the crane is limited once the crane runs within the slow speed area. The function also features uni-directional speed limit. For example, only the upward running speed is limited when the crane runs within the upward slow speed area.		

Function description	Specifications
Load position	In closed-loop mode, an encoder is used to obtain load position information.
Master/slave control	Including power balance and speed synchronization between the master and slave.
	Including lifting, horizontal moving, construction elevator, tower crane slewing, moving, and user-defined application macros.
Lifting and horizontal moving switchover	Three groups of motor parameters, control modes, and application macros can be switched.
Frequency decrease by voltage	When the bus voltage is continuously low, the reference frequency is decreased to keep the normal output torque of VFD.
Low voltage protection	When the bus voltage decreases transiently or the VFD quickly stops due to power outage, the function is used to ensure the hook does not slip. The low voltage protection function is automatically disabled once the bus voltage restores to the normal state.
	The VFD reports the low-speed run protection fault when the low-speed run time exceeds the allowed time. The prevents the axial cooling motor from being damaged due to overheating caused by long-time running.
Overload protection	In closed-loop mode, when overload occurs, upward lifting is restricted.
Eddy current control	The HDO outputs PWM waves to directly control eddy current.
	When the brake control signal is inconsistent with the brake feedback signal, the VFD handles the inconsistency according to the brake status to ensure safety.
Zero position detection	The zero position signal and running signal are mutually exclusive.
	The VFD verifies the current or torque before brake release. The VFD performs brake release when the verification succeeds, and the VFD reports the verification fault when the verification fails.
One key open/closed loop switchover	The closed-loop control mode can be switched to the open-loop control mode through terminals. When the encoder is faulty, the open-loop control mode can be used. The switchover can get response only in stopped state but not in running state.
Jogging	After receiving a jogging command, the VFD can automatically

Function description		Specifications		
		start, run, and stop at the preset running frequency and time		
		according to the settings. During the process, the brake can be		
		normally opened or closed under the control of VFD, ensuring		
		the stability without hook slip or exception when the crane starts		
		or stops.		
		In high-speed lifting mode, the high speed is limited at the		
	Smooth lifting	moment of steel rope straightening, reducing the impact caused		
		by the sudden load to the crane at the lifting start.		
	Instant stop of	In the process of upward lifting, if the hook is abnormally hung, it		
	Instant stop at	can quickly stop the machine and instantly eliminate the potential		
	load change	safety hazards.		
	Set frequency	If the set frequency is lower than the threshold after the brake is		
	exception	opened, the VFD reports the set frequency exception, which		
	protection	prevents slip caused by insufficient force at low speed.		
		An I/O expansion card can receive the input from a motor		
	N 4 - 4	temperature sensor (PT100, PT1000, or PTC); at the same time,		
	Motor overheating	Al analog can also receive the input from a motor temperature		
	protection	sensor (PT100, PT1000, KTY84, or PTC), for motor overheating		
		protection.		
	Terminal analog	No more than 20mV		
	input resolution	No more than 20mv		
	Terminal digital	No more than 2ms		
	input resolution	No more than 2ms		
	Analog input	Two inputs; AI1: 0–10V/0–20mA; AI2: -10–10V		
	Analog output	One input; AO1: 0–10V/0–20mA		
		Four regular inputs; max. frequency: 1kHz; internal impedance:		
	Digital input	3.3kΩ		
1	Digital Input	Two high-speed inputs; max. frequency: 50kHz; supporting		
Peripheral		quadrature encoder input; with speed measurement function		
interface	Digital output	One high-speed pulse output; max. frequency: 50kHz		
	- 19.1 2 2 17 2 1	One Y terminal open collector output		
		Two programmable relay outputs		
	Relay output	RO1A: NO; RO1B: NC; RO1C: common		
	rtelay output	RO2A: NO; RO2B: NC; RO2C: common		
		Contact capacity: 3A/250VAC, 1A/30VDC		
		SLOT1, SLOT2, and SLOT3		
	Extended	Supporting PG cards, programmable expansion cards,		
	interfaces	communication cards, I/O cards and so on		
		Note:		

Function description		Specifications		
		The 1.5–5.5kW VFD models support two expansion cards at most at the same time.		
		The 7.5kW and higher VFD models support three expansion		
		cards at most at the same time.		
		Two programmable relay outputs. Contact capacity: 3A/250VAC,		
	Relay output	1A/30VDC		
		RO3A: NO; RO3C: common; RO4A: NO; RO4C: common		
		Three regular inputs		
		Internal impedance: 6.6kΩ		
		Max. input frequency: 1kHz		
		Supporting the internal power 24V		
I/O	Digital input	Supporting the voltage input of external power		
expansion	Digital Input	(-20%)24-48VDC(+10%) and (-10%)24-48VAC(+10%)		
card 2		Bidirectional input terminals, simultaneously supporting NPN and		
Caru 2		PNP connection methods		
		One channel supports PTC input, while PTC acts at $2.5k\Omega$, and		
		supports the input of only dry contacts sharing COM		
	PT100 input	Independent PT100 and PT1000 input:		
		1. Resolution rate: 1°C		
	PT1000 input	2. Range: -20°C–150°C		
		3. Detection precision: ±3°C		
		Supporting offline protection		
	Mounting method	Supports wall-mounting, floor-mounting and flange-mounting.		
	Temperature of	-10°C – 50°C. Derating is required when the ambient		
	running	temperature exceeds 40°C.		
	environment	temperature exceeds 40 C.		
	Ingress protection	IP20		
	(IP) rating	20		
	Pollution degree	Degree 2		
	Cooling method	Forced air cooling		
Other		Standard built-in part for 380V 18.5–110kW VFD models.		
	DC reactor	Optional external part for 380V 132kW and higher models and for		
		660V models.		
	Braking unit	Standard built-in part for 380V 110kW and lower VFD models.		
	Draining arm	Optional external part for 660V models.		
		C3 filters are optional parts and can be built in the VFD.		
		If a C3 filter is required, connect the jumper J10. After the C3		
	EMC filter	filter is configured, the VFD can meet IEC61800-3 C3		
		requirements.		
		Optional external filters can be used to meet the IEC61800-3 C2		

Function description	Specifications
	requirements.

Table 3-2 Specialized functions

Function				Control mode		
	Mode			SVC	FVC	
		Brake control in speed mode			$\sqrt{}$	
		Restart after braking				
		Brake feedback			$\sqrt{}$	
		Zero position detection			$\sqrt{}$	
		Current verification	√	√	√	
	Brake control	Torque verification	/		$\sqrt{}$	
		Brake slip verification	/	/	√	
		Speed deviation detection			$\sqrt{}$	
		Jogging			$\sqrt{}$	
		Set frequency exception protection	√	√	√	
		Brake control in torque mode	/	√	√	
		Torque control	/	√	√	
	Torque control	Pre torque	/	√	√	
	Conical motor	Conical motor control	√	/	/	
	Light load speed boost	Simplified speed boost mode	√	√	√	
0		Constant power speed boost	√	√	√	
Specialized		Constant power speed limit	√	√	√	
functions		Stepped speed limit	√	√	V	
	Safety functions	STO	√	\checkmark	V	
		Zero servo	/	/	V	
		Loose rope protection	/	/	V	
		Stable lifting protection	/	/	$\sqrt{}$	
		Instant stop at load change	/	/	$\sqrt{}$	
		Upward or downward position limit			$\sqrt{}$	
		Upward or downward DEC position limit			$\sqrt{}$	
		Overload protection			$\sqrt{}$	
		Braking short-circuit protection			$\sqrt{}$	
		Motor disconnection protection			$\sqrt{}$	
		Anti-snag protection	/	/	$\sqrt{}$	
	NA4/-I	Speed synchronization	\checkmark		\checkmark	
	Master/slave control	Power balance	V	$\sqrt{}$		
		Position synchronization	/	/	√	
	Clausing control	Using an eddy current controller	√	/	√	
	Slewing control	Without using an eddy current controller	√	/	√	

Function				Control mode	
		Reverse braking		/	$\sqrt{}$
		FWD/REV switchover	$\sqrt{}$	/	$\sqrt{}$
		Wind resistance		/	$\sqrt{}$
		Jogging hook following	$\sqrt{}$	/	$\sqrt{}$
		Open/closed switchover	$\sqrt{}$		$\sqrt{}$
		Motor parameter switchover	$\sqrt{}$		$\sqrt{}$
	Control switchover	Simultaneous motor and master/slave switchover	√	V	√
		Simultaneous motor and function macro switchover	V	V	1
		Simultaneous motor and speed control mode switchover	V	V	√
		Load position	/	/	$\sqrt{}$
	Other functions	Height measuring	/	/	$\sqrt{}$
		Tower crane trolley rope tracking			$\sqrt{}$
		Anti-sway for horizontal moving	$\sqrt{}$	√	$\sqrt{}$
		Motor temperature protection		√	$\sqrt{}$
		CVCF function	$\sqrt{}$	/	/

3.4 Product nameplate

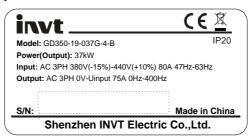


Figure 3-6 Product nameplate

Note: This is a nameplate example for standard Goodrive350-19 VFD models. The markings such as "CE" and "IP20" on the nameplate vary depending on actual certification status.

3.5 Model designation code

A model designation code contains product information. You can find the model designation code on the VFD nameplate and simplified nameplate.

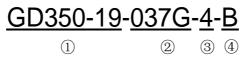


Figure 3-7 Model description

Field	Field description	Content	
1	Product series abbreviation	GD350-19: Goodrive350-19 series VFD for crane	
2	Power range + Load type	037: 37kW G: Constant torque load	
3	Voltage class	4: AC 3PH 380V(-15%)-440V(+10%) 6: AC 3PH 520V(-15%)-690V(+10%)	
4	Built-in braking unit	B: Built-in braking unit Empty: No built-in braking unit	

3.6 Product ratings

Table 3-3 AC 3PH 380V(-15%) - 440V(+10%)

VFD model	Output power (kW)	Input current (A)	Output current (A)
GD350-19-1R5G-4-B	1.5	5.0	3.7
GD350-19-2R2G-4-B	2.2	5.8	5
GD350-19-004G-4-B	4	13.5	9.5
GD350-19-5R5G-4-B	5.5	19.5	14
GD350-19-7R5G-4-B	7.5	25	18.5
GD350-19-011G-4-B	11	32	25
GD350-19-015G-4-B	15	40	32
GD350-19-018G-4-B	18.5	41	38
GD350-19-022G-4-B	22	48	45
GD350-19-030G-4-B	30	58	60
GD350-19-037G-4-B	37	72	75
GD350-19-045G-4-B	45	88	92
GD350-19-055G-4-B	55	106	115
GD350-19-075G-4-B	75	139	150
GD350-19-090G-4-B	90	168	180
GD350-19-110G-4-B	110	201	215
GD350-19-132G-4	132	265	260
GD350-19-160G-4	160	310	305
GD350-19-185G-4	185	345	340
GD350-19-200G-4	200	385	380
GD350-19-220G-4	220	430	425
GD350-19-250G-4	250	485	480
GD350-19-280G-4	280	545	530
GD350-19-315G-4	315	610	600
GD350-19-355G-4	355	625	650

VFD model	Output power (kW)	Input current (A)	Output current (A)
GD350-19-400G-4	400	715	720
GD350-19-450G-4	450	840	820
GD350-19-500G-4	500	890	860

Note:

- The input current of the 1.5–500kW VFD models is measured in cases where the input voltage is 380V without additional reactors.
- The rated output current is the output current when the output voltage is 380V.
- Within the allowable input voltage range, the output current/power cannot exceed the rated output current/power.

Table 3-4 AC 3PH 520V(-15%) - 690V(+10%)

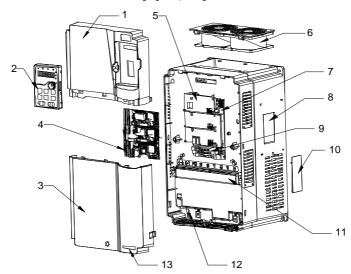
VFD model	Output power (kW)	Input current (A)	Output current (A)
GD350-19-022G-6	22	35	27
GD350-19-030G-6	30	40	35
GD350-19-037G-6	37	47	45
GD350-19-045G-6	45	52	52
GD350-19-055G-6	55	65	62
GD350-19-075G-6	75	85	86
GD350-19-090G-6	90	95	98
GD350-19-110G-6	110	118	120
GD350-19-132G-6	132	145	150
GD350-19-160G-6	160	165	175
GD350-19-185G-6	185	190	200
GD350-19-200G-6	200	210	220
GD350-19-220G-6	220	230	240
GD350-19-250G-6	250	255	270
GD350-19-280G-6	280	286	300
GD350-19-315G-6	315	334	350
GD350-19-355G-6	355	360	380
GD350-19-400G-6	400	411	430
GD350-19-450G-6	450	445	465
GD350-19-500G-6	500	518	540
GD350-19-560G-6	560	578	600
GD350-19-630G-6	630	655	680

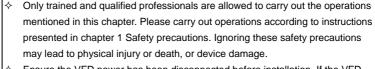
Note:

- The input current of the 22–350kW VFD models is measured in cases where the input voltage is 660V without DC reactors and input/output reactors.
- The input current of the 400–630kW VFD models is measured in cases where the input voltage is 660V and there are input reactors.
- The rated output current is the output current when the output voltage is 660V.
- Within the allowable input voltage range, the output current/power cannot exceed the rated output current/power.

3.7 Structure

The VFD structure is shown in the following figure (taking the 380V 30kW VFD model as an example).




Figure 3-8 Product structure

No.	Name	Description
1	Upper cover	Protects internal components and parts.
2	Keypad	See section 6.2 LED keypad introduction.
3	Lower cover	Protects internal components and parts.
4	Europaion and	Optional
4	Expansion card	For details, see section Appendix A Expansion card.
5	Baffle of control board	Protects the control board and install expansion card.
6	Cooling fan	See chapter 10 Maintenance.
7	Keypad interface	Connects the keypad.
8	Nameplate	See chapter 3 Product overview.
9	Control circuit terminals	See chapter 4 Installation guidelines.
	0	Optional
10	Cover plate of heat emission hole	Cover plate can upgrade protection level, however, as it will
		also increase internal temperature, derated use is required.
11	Main circuit terminal	See chapter 4 Installation guidelines.
12	POWER indicator	Power supply indicator
13	GD350-19 series product label See chapter 3.5 Model designation code.	

4 Installation guidelines

4.1 What this chapter contains

This chapter describes the mechanical installation and electrical installation of the VFD.

- Ensure the VFD power has been disconnected before installation. If the VFD has been powered on, disconnect the VFD power and wait for at least the time specified on the VFD, and ensure the POWER indicator is off. You are recommended to use a multimeter to check and ensure the VFD DC bus voltage is below 36V.
- The VFD installation must be designed and done according to applicable local laws and regulations. INVT does not assume any liability whatsoever for any VFD installation which breaches local laws or regulations. If recommendations given by INVT are not followed, the VFD may experience problems that the warranty does not cover.

4.2 Mechanical installation

4.2.1 Installation environment

The installation environment is essential for the VFD to operate with best performance in the long run. Install the VFD in an environment that meets the following requirements.

Environment	Condition		
Installation site	Indoor		
	→ -10-+50°C		
	When the ambient temperature exceeds 40°C, derate by 1% for every increase of 1°C.		
Ambient	♦ Do not use the VFD when the ambient temperature exceeds 50°C.		
	In order to improve reliability, do not use the VFD in the places where the temperature changes rapidly.		
temperature	♦ When the VFD is used in a closed space, such as control cabinet, use a cooling fan or air conditioner for cooling, preventing the internal temperature from exceeding the temperature required.		
	When the temperature is too low, if you want to use the VFD that has been idled for a long time, install an external heating device before the use to eliminate the freeze inside the VFD. Otherwise, the VFD may be damaged.		
Relative	♦ RH: less than 90%		

Environment	Condition	
humidity (RH)	♦ Condensation is not allowed.	
	♦ The max. RH cannot exceed 60% in the environment where there are	
	corrosive gases.	
Storage	-30-+60.0°C	
temperature		
	Install the VFD in a place:	
	♦ Away from electromagnetic radiation sources	
	♦ Away from oil mist, corrosive gases, and combustible gases	
	♦ Without the chance for foreign objects such as metal powder, dust, oil and	
Running	water to fall into the VFD (do not install the VFD onto combustible objects such	
environment	as wood)	
	♦ Without radioactive substances and combustible objects	
	♦ Without hazard gases and liquids	
	♦ With low salt content	
	♦ Without direct sunlight	
	♦ Lower than 1000 meters	
Altitorala	♦ When the altitude exceeds 1000m, derate by 1% for every increase of 100m.	
Altitude	♦ When the installation site altitude exceeds 3000m, consult the local INVT	
	dealer or office.	
Vibration	The max. amplitude of vibration cannot exceed 5.8m/s² (0.6g).	
Installation direction	Install the VFD vertically to ensure good heat dissipation performance.	

Note:

- The VFD must be installed in a clean and well-ventilated environment based on the housing IP rating.
- The cooling air must be clean enough and free from corrosive gases and conductive dust.

4.2.2 Installation direction

The VFD can be installed on the wall or in a cabinet.

The VFD must be installed vertically. Check the installation position according to following requirements. For details about the outline dimensions, see Appendix C Dimension drawings.

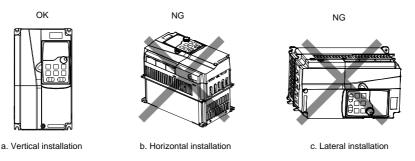


Figure 4-1 Installation direction

4.2.3 Installation method

There are three kinds of installation modes based on different VFD dimensions.

- Wall mounting: applicable to 380V 315kW and lower models, and 660V 355kW and lower models
- Flange mounting: applicable to 380V 200kW and lower models, and 660V 220kW and lower models
- Floor mounting: applicable to 380V 220–500kW and 660V 250–630kW models

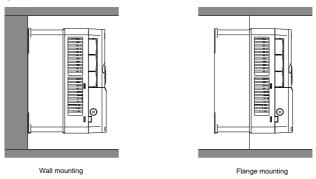
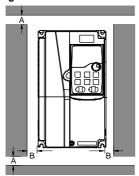


Figure 4-2 Mounting method


- Step 1 Mark the installation hole positions. For details about the installation hole positions, See Appendix D Optional peripheral accessories.
- Step 2 Mount the screws or bolts onto the designated positions.
- Step 3 Lean the VFD against the wall.
- Step 4 Tighten the screws.

Note:

 When the flange mounting method is used, the (optional part) flange mounting plate is required for the 380V 1.5–75kW VFD models but not required for the 380V 90–200kW and 660V 22-220kW VFD models.

- For a VFD without the need to use a flange mounting plate, you only need to remove the upper
 and lower mounting beams from the VFD back, and then move them to the VFD middle position
 as shown in the preceding figure. After tightening screws to fix the mounting beams, you can
 perform flange mounting for the VFD.
- The 380V 220–315kW and 660V 250–355kW VFD models support the (optional part) installation base, which can house an input AC reactor (or DC reactor) and an output AC reactor.

4.2.4 Installing one VFD

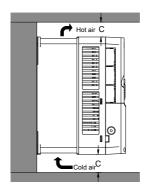
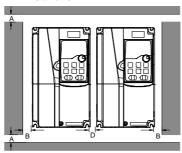



Figure 4-3 Installing one VFD

Note: For clearances B and C, each must be 100mm at least.

4.2.5 Multiple-VFD installation

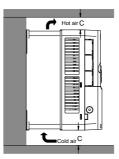


Figure 4-4 Parallel installation

Note:

- When you install VFDs in different sizes, align the top of each VFD before installation for the convenience of future maintenance.
- For clearances B, D and C, each must be 100mm at least.

4.2.6 Vertical installation

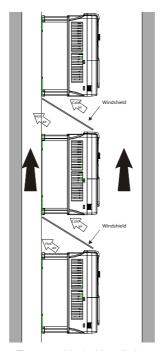


Figure 4-5 Vertical installation

Note: During vertical installation, you must install windshield, otherwise, the VFD will experience mutual interference, and the heat dissipation effect will be degraded.

4.2.7 Tilted installation

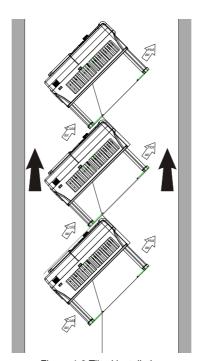


Figure 4-6 Tilted installation

Note: During tilted installation, it is a must to ensure the air inlet duct and air outlet duct are separated from each other to avoid mutual interference.

4.3 Standard wiring of the main circuit

4.3.1 Main circuit wiring diagram

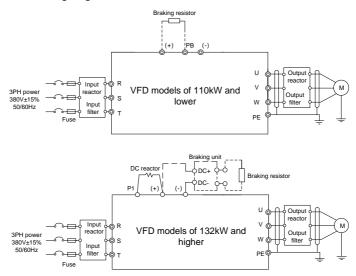


Figure 4-7 Main circuit wiring diagram for AC 3PH 380V(-15%) - 440V(+10%)

Note:

- The fuse, DC reactor, braking unit, braking resistor, input reactor, input filter, output reactor and output filter are optional parts. For details, see Appendix D Optional peripheral accessories.
- P1 and (+) have been short connected by default for the 380V 132kW and higher VFD models. If you need to connect an external DC reactor, take off the jumper between P1 and (+).
- Before connecting the braking resistor, remove the yellow warning label with PB, (+) and (-) from the terminal block; otherwise, poor contact may occur.

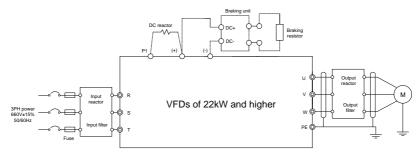


Figure 4-8 Main circuit wiring diagram for AC 3PH 520V(-15%) - 690V(+10%)

Note:

- The fuse, DC reactor, braking resistor, input reactor, input filter, output reactor and output filter are
 optional parts. For details, see Appendix D Optional peripheral accessories.
- P1 and (+) have been short connected by default. If you need to connect an external DC reactor, remove the jumper between P1 and (+).
- Before connecting the braking resistor, remove the yellow warning label with (+) and (-) from the terminal block; otherwise, poor contact may occur.

4.3.2 Main circuit terminal diagram

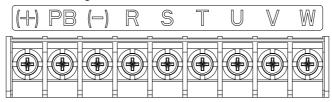


Figure 4-9 Main circuit terminal diagram for 3PH 380V 22kW and lower

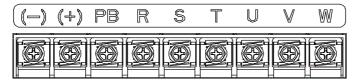


Figure 4-10 Main circuit terminal diagram for 3PH 380V 30-37kW

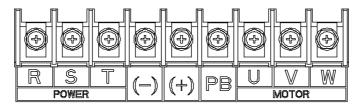


Figure 4-11 Main circuit terminal diagram for 3PH 380V 45-110kW

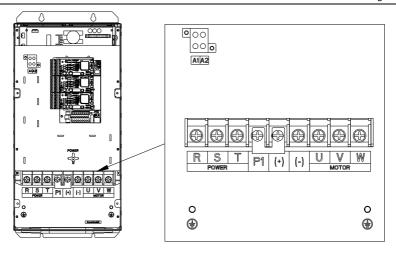


Figure 4-12 Main circuit terminal diagram for 660V 22–45kW

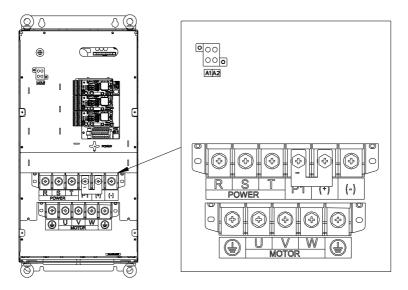


Figure 4-13 Main circuit terminal diagram for 660V 55-132kW

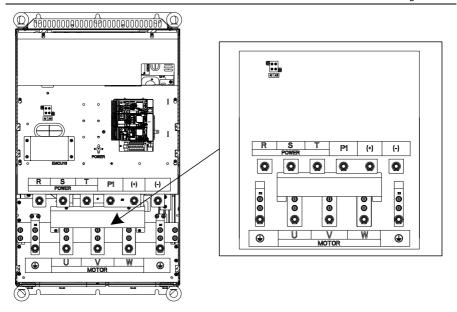


Figure 4-14 Main circuit terminal diagram for 380V 132–200kW (without A1 or A2) and 660V 160–220kW

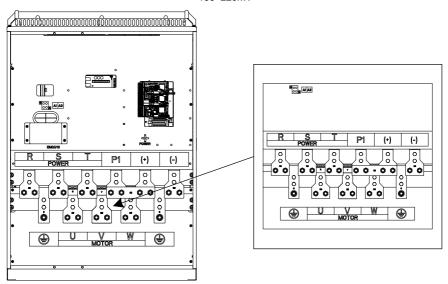


Figure 4-15 Main circuit terminal diagram for 380V 220–315kW (without A1 or A2) and 660V 250–355kW

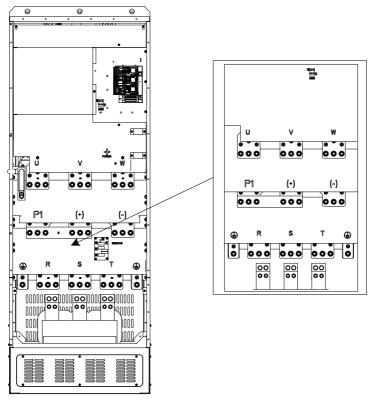


Figure 4-16 Main circuit terminal diagram for 380V 355–500kW (without A1 or A2) and 660V 400–630kW

	Terminal name			
Terminal		380V 132kW and	Function description	
symbol	380V 110kW and lower	/ 110kW and lower higher		
		660V		
рст	Main circuit power input		3PH AC input terminals,	
R, S, T			connecting to the grid.	
11 \/ \A/	VFD outputs		3PH AC output terminals,	
U, V, W			connected to the motor usually	
P1	Not available	DC reactor terminal 1	P1 and (+) connect to external DC	
(.)	Braking resistor terminal	DC reactor terminal 2	reactors.	
(+)	1	Braking unit terminal 1	(+) and (-) connect to the external	
(-)	/	Braking unit terminal 2	braking unit.	

	Terminal name		
Terminal		380V 132kW and	Function description
symbol	380V 110kW and lower	higher	Function description
		660V	
PB	Braking resistor terminal Not available		PB and (+) connect to external
PD	2	Not available	braking resistor terminal
			Grounding terminal for safe
PE	Safety protection grounding terminal (grounding		protection; each machine must
FE	resistance less than 10Ω)		carry two PE terminals and proper
			grounding is required
A1, A2	Not available	Available only for 660V	External 220V control power
A1, A2	inot available	series	terminals

Note:

- It is not recommended to use asymmetrical motor cables. If there is a symmetrical grounding conductor in the motor cable besides the conductive shielded layer, ground the grounding conductor on the VFD end and motor end.
- Braking resistor, braking unit and DC reactor are optional parts.
- Route the motor cable, input power cable and control cable separately.
- "Not available" means this terminal is not for external connection.

4.3.3 Wiring procedure for main circuit terminals

- Step 1 Connect the grounding line of the input power cable to the grounding terminal (PE) of the VFD, and connect the 3PH input cable to R, S and T terminals and tighten up.
- Step 2 Connect the ground wire of the motor cable to the PE terminal of the VFD, connect the motor 3PH cable to the U, V and W terminals, and tighten up.
- Step 3 Connect optional parts such as the braking resistor that carries cables to designated positions.
- Step 4 Fasten all the cables outside the VFD mechanically if allowed.

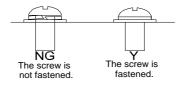


Figure 4-17 Screw installation diagram

4.4 Standard wiring of the control circuit

4.4.1 Wiring diagram of basic control circuit

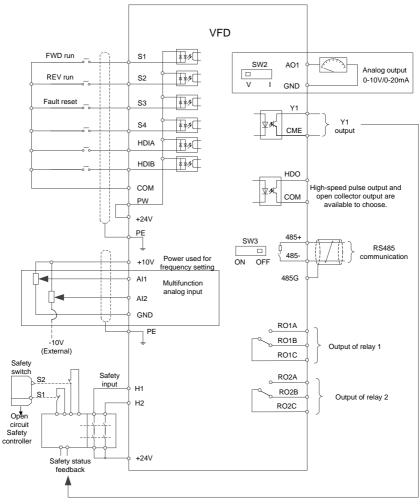


Figure 4-18 Wiring diagram of basic control circuit

Terminal name	Description
+10V	Locally provided +10.5V power supply
Al1	Input range: For AI1, 0–10V or 0–20mA
Al2	For AI2, -10V – +10V

Terminal name	Description		
	Input impedance: $20k\Omega$ for voltage input or 250Ω for current input		
	Whether voltage or current is used for input of Al1 is set through P05.50.		
	Resolution: 5mV when 10V corresponds to 50Hz		
	Deviation: ±0.5% at 25°C, when input is above 5V/10mA.		
GND	+10.5V reference ground		
	Output range: 0–10V or 0–20mA		
AO1	Whether voltage or current is used for output is set through the switch SW2		
	Deviation: ±0.5% at 25°C, when output is above 5V/10mA		
RO1A	RO1 output; RO1A: NO; RO1B: NC; RO1C: common		
RO1B	Contact capacity: 3A/AC250V, 1A/DC30V		
RO1C	Contact capacity. 37/70230V, 17/10030V		
RO2A	RO2 output; RO2A: NO; RO2B: NC; RO2C: common		
RO2B	Contact capacity: 3A/AC250V, 1A/DC30V		
RO2C	Contact capacity. 37/70230V, 17/10030V		
	Switch capacity: 200mA/30V		
HDO	Output frequency range: 0–50kHz		
	Duty ratio: 50%		
COM	+24V reference ground		
CME	Common terminal of open collector output; short connected to COM by default.		
Y1	Switch capacity: 200mA/30V		
	Output frequency range: 0–1kHz		
485+	RS485 communication/differential signal port. The standard 485 communication		
	interface should use shielded twisted pairs; you can determine whether to connect		
485-	the 120Ω terminal matching resistor for RS485 communication through the switch		
	SW3.		
PE	Grounding terminal		
PW	External power input terminal for digital input circuits		
	Voltage range: 12–30V		
+24V	User power supply provided by the VFD. Max. output current: 200mA		
S1	Digital input 1 1、Internal impedance: 3.3kΩ		
S2	Digital input 2 2 12–30V voltage input is acceptable		
S3	Digital input 3 3. Bi-direction input terminals, supporting both NPN and PNP		
	connection methods		
S4	4\ Max. input frequency: 1kHz Digital input 4		
	5. Programmable digital input terminals, the functions of which can		
	be set through the related parameters		
HDIA	Channels for both high frequency pulse input and digital input		
HDIB	Max. input frequency: 50kHz		
	Duty ratio: 30%–70%		

Terminal name	Description		
	Supporting qua	drature encoder input; with the speed measurement function	
+24V—H1	STO input 1	1、Safe torque off (STO) redundant input, connected to the external	
+24V—H2	STO input 2	 NC contact. When the contact opens, STO acts and the VFD stops output. 2. Safety input signal wires use shielded wires whose length is within 25m 3. The H1 and H2 terminals are short connected to +24V by default. Remove the jumper from the terminals before using STO function. 	

4.4.2 Input/output signal connection diagram

You can select the NPN/PNP mode and internal/external power through the U-type short connector. NPN internal mode is adopted by default. NPN internal mode is adopted by default.

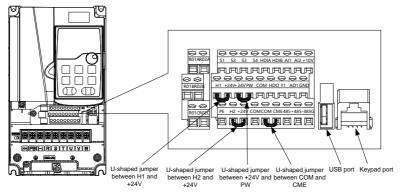


Figure 4-19 U-shaped jumper positions

Note: As shown in the figure, the USB port can be used to upgrade the software, and the keypad port can be used to connect an external keypad. The external keypad cannot be used when the keypad of the VFD is used.

If the input signal comes from the NPN transistor, set the U-shaped jumper between +24V and PW based on the power used according to Figure 4-20 NPN mode.

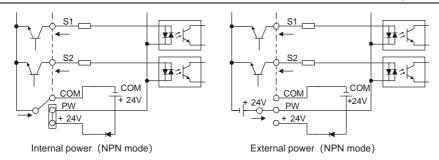


Figure 4-20 NPN mode

If the input signal comes from the PNP transistor, set the U-shaped jumper between COM and PW based on the power used according to Figure 4-21 PNP mode.

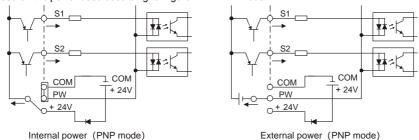


Figure 4-21 PNP mode

4.4.3 Control circuit wiring of I/O expansion card 2

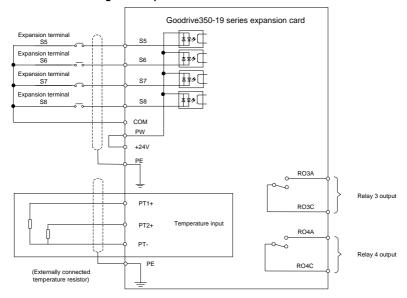


Figure 4-22 Control circuit wiring of I/O expansion card 2

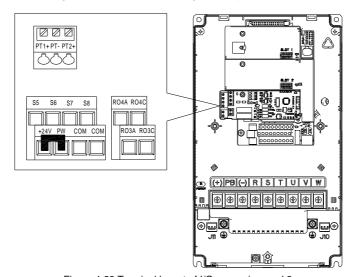


Figure 4-23 Terminal layout of I/O expansion card 2

Terminal name		Description		
	Independent F	T100 and PT1000 inputs: PT1+ connects to PT100, while PT2+		
PT1+	connects to PT	1000.		
	1、Resolution	: 1°C		
DTO.	2、 Range: -20	°C–150°C		
PT2+	3. Detection p	precision: 3°C		
	4、Supporting	offline protection.		
PT-	Reference zero	potential of PT100/PT1000		
RO3A	RO3 outputs. F	RO3A: NO; RO3C: common		
RO3C	Contact capaci	ty: 3A/AC250V, 1A/DC30V		
RO4A	RO4 outputs. F	RO4A: NO; RO4C: common		
RO4C	Contact capaci	ty: 3A/AC250V, 1A/DC30V		
PW	External power input terminal for digital input circuits			
PW	Voltage range: 24(-20%)-48VDC(+10%), 24(-10%)-48VAC(+10%) voltage input.			
+24V	User power su	oply provided by the VFD. Max. output current: 200mA		
COM	+24V common	terminal		
S5	Digital input 5	♦ Internal impedance: 6.6kΩ		
00	D: :: 1:	♦ Supporting the voltage input of external power		
S6	Digital input 6	(-20%)24-48VDC(+10%) and (-10%)24-48VAC(+10%)		
		Supporting the internal power 24V		
		♦ Bi-direction input terminals, supporting both NPN and PNP		
S7	Digital ignut 7	connection methods		
57	Digital input 7	♦ Max. input frequency: 1kHz		
		♦ Programmable digital input terminals, the functions of which		
		can be set through the related parameters		
		It supports PTC input, while PTC acts at $2.5 k\Omega$. It supports internal		
S8	Digital input 8	pull-up of +24V, and it supports the input of only dry contacts sharing		
		COM. The max. input frequency is 50Hz.		

Note:

- You can install optional expansion cards for 1.5–5.5kW VFD models and you are recommended to install them in slot 2.
- I/O expansion card 2 has been installed in slot 3 for 7.5kW and higher VFD models as standard configuration.

4.5 Wiring protection

4.5.1 Protecting the VFD and input power cable in case of short circuit

The VFD and input power cable can be protected in case of short circuit, avoiding thermal overload. Carry out protective measures according to the following figure.

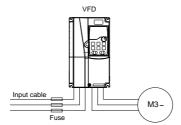


Figure 4-24 Fuse configuration

Note: Select the fuse according to the manual. In case of short circuit, the fuse protects input power cables to avoid damage to the VFD; if internal short-circuit occurs to the VFD, it can protect neighboring equipment from being damaged.

4.5.2 Protecting the motor and motor cable in case of short circuit

If the motor cable is selected based on VFD rated current, the VFD is able to protect the motor cable and motor during short circuit without other protective devices.

If the VFD is connected to multiple motors, use a separated thermal overload switch or breaker to protect the cable and motor, which may require the fuse to cut off the short circuit current.

4.5.3 Protecting the motor against thermal overload

The motor must be protected against thermal overload. Once overload is detected, current must be cut off. The VFD is equipped with the motor thermal overload protection function, which can block output and cut off the current (if necessary) to protect the motor.

4.5.4 Bypass connection

In some critical scenarios, the power/variable frequency conversion circuit needs to be configured to ensure proper operation of the system when a fault occurs to the VFD.

In some special scenarios, such as in soft startup, power-frequency running is directly performed after the startup, which requires bypass connection.

Do not connect any power source to the VFD output terminals U, V, and W. The voltage applied to the motor cable may cause permanent damage to the VFD.

If frequent switchover is needed, you can use the switch that carries mechanical interlock or a contactor to ensure motor terminals are not connected to input power cables and VFD output ends simultaneously.

5 Commissioning guidelines

5.1 Lifting

In lifting mechanical equipment, mechanical braking is generally involved, which means that a motor can quickly stop rotation after the power supply to the motor is disconnected through the mechanical device. Mechanical braking is widely used in tower cranes, factory cranes, mining cranes, and port cranes, generally including electromagnetic braking and hydraulic braking.

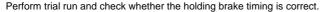
In addition, there is special braking widely used in lifting equipment such as electric hoists and winches, and conical motors with the automatic braking capability at power outage.

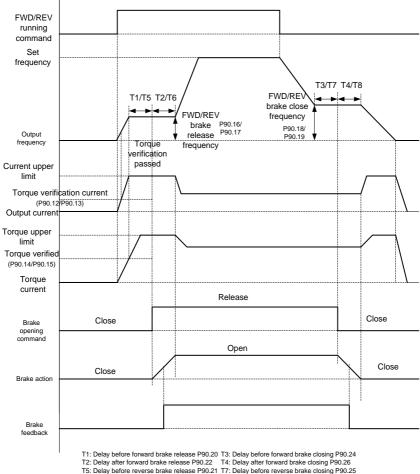
This product has the built-in mechanical holding brake control logic function and conical motor control function.

5.1.1 Commissioning the mechanical holding brake function (P90.04=1)

The mechanical holding brake function indicates that the VFD takes account of mechanical holding brake action response time and drives and controls the mechanism holding brake through relays of control terminals so as to achieve stable control on brake release and closing.

The commissioning procedure for common holding brake is as follows:

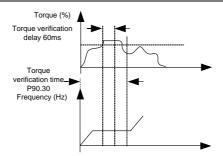

- Step 1 Set P90.04 to 1 to enable the holding brake function.
- Step 2 Set relay holding brake output. If RO1 is connected to the holding brake contactor, set P06.03 to 49.
- Step 3 If the holding brake contactor has the feedback function, connect the holding brake feedback wire to an input terminal, for example, S6. Then set P25.02 to 75 indicating holding brake feedback signal. Set P90.31 to 1 to enable holding brake feedback detection. In closed-loop mode, the holding brake current monitoring function is enabled automatically. If a holding brake exception occurs, a protection method is applied depending on the present current and the value of P90.34. Skip this step if the holding brake contactor has no feedback function.
- Step 4 Set the torque verification value during brake release to ensure there is enough torque before the brake is opened.
- In open-loop or closed-loop vector control mode, usually set P90.14 (Forward holding brake release torque) and P90.15 (Reverse holding brake release torque).
- In space voltage vector control mode, usually set P90.12 (Forward holding brake release current) and P90.13 (Reverse holding brake release current).
- Step 5 Set the holding brake timing, including the forward/reverse holding brake release frequency, forward/reverse holding brake closing frequency, delay before forward holding brake release (T1), delay before reverse holding brake release (T5), delay after forward holding brake release (T2), delay after reverse holding brake release (T6), delay before forward holding brake closing (T3), delay before reverse holding brake closing (T7), delay after forward

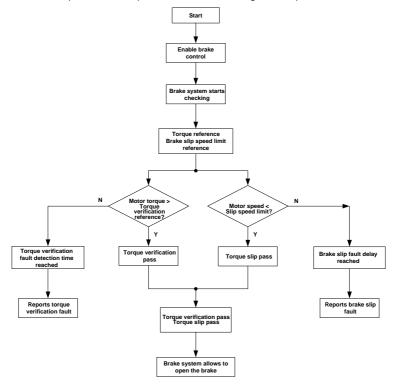

holding brake closing (T4), and delay after reverse holding brake closing (T8).

Note: If delay before reverse holding brake release (T5), delay after reverse holding brake release (T6), delay before reverse holding brake closing (T7), and delay after reverse holding brake closing (T8) are set to 0, the delay parameters for forwarding running are used.

Step 6 T1, T5, T3, and T7 are usually set to 0 (default value).

- > T2, T6, T4, and T8 are related to the mechanical holding brake action time. For electromagnetic holding brake, the time is generally in the range of 0.200–0.400s; for hydraulic holding brake, the time is generally in the range of 0.300–1.000s. The time needs to be adjusted according to the actual situation.
- In closed loop vector control mode, the holding brake release frequency is generally in the range of 0.20–0.50Hz, and the brake closing frequency is 0.00Hz.
- For open loop vector and space voltage vector control modes, see subsequent parameter settings.




5.1.1.1 Description about torque verification and brake slip

After the VFD runs, the VFD output current or torque is checked before the holding brake release. If the VFD output current or torque is greater than the output current or torque setting (P90.12 or P90.15) and the situation lasts 60ms, torque verification succeeds. If torque verification does not pass after the torque verification time P90.30 is reached, the torque verification fault "tPF" is reported.

T6: Delay after reverse brake release P90.23 T8: Delay after reverse brake closing P90.27

In closed-loop mode, if the holding brake slip fault delay P93.01 is greater than 0, the holding brake slip detection function is enabled. During torque verification, if the motor (encoder) speed is close to the holding brake release frequency and the situation duration exceeds P93.01, the holding brake failure fault "bE" is reported. The torque verification and holding brake slip flowchart is as follows:

5.1.1.2 Holding brake parameters in speed mode

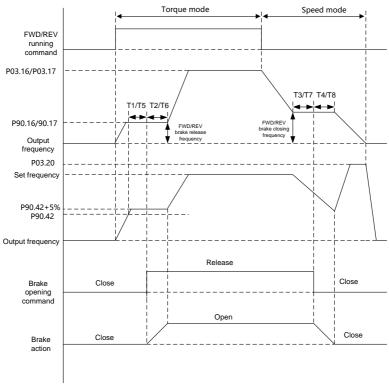
Holding brake control generally refers to holding brake control in speed mode, or at least one working

condition is holding brake in speed mode. The main relevant parameters are listed in the following.

Function code	Name	Description	Default
P90.04	Enabling brake-oriented logic	0-1 0: The brake is controlled by an external controller. 1: The brake is controlled by the VFD.	0
P90.05	Enabling forward torque for reverse-running start/stop	Ox00–0x11 Ones place: indicates whether to enable forward torque for reverse-running start O: Disable (The reverse-running start direction is consistent with the command.) 1: Enable (The reverse-running start direction is always the forward-running direction.) Tens place: indicates whether to enable forward torque for reverse-running stop O: Disable (The reverse-running stop direction is consistent with the command.) 1: Enable (The reverse-running stop direction is always the forward-running direction.)	0x00
P90.12	Forward brake release current	0.0–200.0% (of the motor rated current)	0.0%
P90.13	Reverse brake release current	0.0–200.0% (of the motor rated current)	0.0%
P90.14	Forward brake release torque	0.0–200.0% (of the motor rated torque)	0.0%
P90.15	Reverse brake release torque	0.0–200.0% (of the motor rated torque)	0.0%
P90.16	Forward brake release frequency	0.00–20.00Hz	3.00Hz
P90.17	Reverse brake release frequency	0.00–20.00Hz	3.00Hz
P90.18	Forward brake closing frequency	0.00–20.00Hz	3.00Hz
P90.19	Reverse brake closing	0.00–20.00Hz	3.00Hz

Function	Nama	Description	Default
code	Name	Description	Default
	frequency		
P90.20	Delay before forward brake release	0.000–5.000s	0.300s
P90.21	Delay before reverse brake release	0.000–5.000s The value 0 indicates the delay before forward brake release is used.	0.000s
P90.22	Delay after forward brake release	0.000-5.000s	0.300s
P90.23	Delay after reverse brake release	0.000–5.000s The value 0 indicates the delay after forward brake release is used.	0.000s
P90.24	Delay before forward brake closing	0.000-5.000s	0.300s
P90.25	Delay before reverse brake closing	0.000–5.000s The value 0 indicates the delay before forward brake closing is used.	0.000s
P90.26	Delay after forward brake closing	0.000–5.000s	0.300s
P90.27	Delay after reverse brake closing	0.000–5.000s The value 0 indicates the delay after forward brake closing is used.	0.000s
P90.28	Retaining frequency for stop	0.00-50.00Hz	5.00Hz
P90.29	Retaining frequency hold time for stop	0.00–5.000s	0.000s
P90.30	Torque verification fault detection time	0.00-10.000s	6.000s
P90.31	Enabling the monitoring on brake status	0-1 0: Disable	0
P90.32	Brake feedback exception delay (brake feedback detection time)	0.00–20.000s	1.000s
P90.33	Brake monitoring current threshold	0.0%–200.0% 100.0% corresponds to the motor rated current.	100.0%
P90.34	Enabling speed reference under brake status error	0-1 0: Disable (The brake feedback fault is reported.)	0

Function code	Name	Description	Default
		1: Enable (The brake feedback alarm	
		is also reported.)	
P90.35	Speed reference under brake status error	0.00–50.00Hz	5.00Hz
	Brake selection for	0–1	
P90.37	forward/reverse	0: No switchover	0
	switchover	1: Switchover	
		0.000–5.000s	
P93.01	Dualding alin fault dalou times	The value 0 indicates brake slip is not	0.500-
F93.01	Braking slip fault delay time	detected, while a non-zero value	0.500s
		indicates brake slip is detected.	


5.1.1.3 Commissioning brake in torque control

In vector control, after the torque mode is enabled (P03.32=1) and holding brake control is enabled (P90.04=1), the holding brake in torque mode is enabled.

Brake release start timing:

- Before brake release, the torque frequency upper limit in forward/reverse rotation equals the holding brake release frequency reference in forward/reverse rotation, and the set torque equals P90.42+5.0%.
- 2. If the detected output torque is greater than or equal to the preset brake opening torque value (P90.42), the delay before brake release starts. When the delay time reaches, the release output is carried out, and then the delay after brake release starts. When the delay time reaches, it indicates that the release timing ends.
- After brake release, the set torque returns to normal and the frequency upper limit of forward/reverse rotation in torque mode returns to normal. This is, the parameters in group P03 determines that the VFD runs in normal torque mode.

Brake closing timing for stop: The VFD automatically switches from the torque mode to the speed mode and then decelerates to stop. Then the holding brake logic can directly use the brake closing logic in the speed mode. The holding brake timing diagram is as follows:

- T1: Delay before forward brake release P90.20 T2: Delay after forward brake release P90.22 T5: Delay before reverse brake release P90.21 T6: Delay after reverse brake release P90.23

- T3: Delay before forward brake closing P90.24 T4: Delay after forward brake closing P90.26 T7: Delay before reverse brake closing P90.25 T8: Delay after reverse brake closing P90.27

For details about torque control function code settings, see P03.11–P03.17 and P03.32.

The parameters that are different from those in holding brake in speed mode are listed in the following.

Function code	Name	Description	Setting
P90.41	Brake release/closing torque limit in vector control	Setting range: 0.0–300.0% (of the motor rated current) During the vector control in speed mode, the torque amplitude is limited within the	250.0%

Function code	Name	Description	Setting
		delay time before brake release, after	
		brake release, before brake closing, or	
		after brake closing.	
	Torque setting for brake release	0.0–200.0%	
		During running, when the torque feedback	
		value is greater than or equal to P90.42, it	
P90.42		enters the brake release timing. (It is valid	50.0%
		only when P90.04=1, which indicates the	
		brake is controlled by the VFD, and the	
		VFD uses the torque mode.)	

Note: You need to set a reasonable torque limit for P90.41 according to the actual situation to prevent speed overshoot after brake release.

5.1.1.4 Commissioning brake in position mode

Holding brake control is supported in digital positioning mode. See the following procedure:

Step 1 Select digital positioning (P21.00 tens place =1) or select "51: Terminal for switching between position control and speed control" for the S terminal function; set other related parameters P21.16–P21.21 for digital positioning.

Step 2 Enable holding brake control (P90.04=1). If RO1 is connected to the holding brake contactor, set P06.03 to 49.

Step 3 Set brake release/closing logic related parameters.

Brake release start timing:

Before brake release, the system will detect whether the present output current is greater than P21.47 (Brake release current in position control). If yes, a delay before brake release starts. When the delay time reaches, the brake release output is carried out. At the same time, the 0Hz operation will be carried and a delay after brake release starts. When the delay time reaches, the brake release timing ends and normal positioning work begins.

Brake closing timing for stop:

During stop, the VFD automatically switches from the position mode to the speed mode and then decelerates to stop. Then the brake logic uses the brake closing logic in the speed mode.

Step 4 By setting P21.17 (Position set in digital mode) and starting the VFD, you can debug whether the brake release/closing meets the timing and position requirements. Afterwards, switch to the position set in communication mode and start debugging.

Main parameters are listed in the following.

Function	Name	Description	Setting
code	Name	Description	Setting
P01.01	Starting frequency of direct start	0.00–50.00Hz	0.00Hz
P01.15	Stop speed	0.00–100.00Hz	0.00Hz
P01.24	Stop speed delay	0.0-600.0s	0.3s
		Ones place: Control mode selection	
		0: Speed control	
		1: Position control	
		Tens place: Position command	
		source	
		0: Pulse train	
		1: Digital position	
P21.00	Positioning mode	2: Photoelectric switch stop	0x0011
		positioning	
		Hundred place: Position feedback	
		source	
		0: P-channel pulse of PG1	
		1: F-channel pulse of PG1	
		2: P-channel pulse of PG2	
		3: SSI signal of PG2	
		0x0000-0xFFFF	
		bit0: Reserved	
		bit1: Positioning cycle selection	
		0: Terminal-based cyclic positioning;	
		1: Automatic cyclic positioning	
		bit2: Reserved	
		bit3: P21.17 digital setting mode	
		0: Incremental; 1: Position	
		bit4-bit5: Reserved	
P21.16	Digital positioning mode	bit6: Positioning completion signal	0x5042
F21.10	Digital positioning mode	selection	or 0x184A
		0: Valid in the positioning completion	
		signal holding time (P21.25); 1:	
		Always valid	
		Bit7: Reserved	
		bit8: Positioning enable signal	
		selection	
		0: Pulse signal; 1: Electrical level	
		signal	
		bit 9: Position source	

Function code	Name	Description	Setting
		0: PROFIBUS/CANopen/EtherCAT	
		communication (when P21.17=0) or	
		P21.17 (P21.17≠0); 1: Reserved	
		bit10: Reserved	
		bit11: Indicates whether to save	
		incremental position during power	
		outage	
		0: Don not save; 1: Save	
		Bit 12–Bit 13: Positioning curve	
		selection	
		0: Straight line; 1: S curve; 2–3:	
		Reserved	
		Bit 14: Indicates whether to keep 0Hz	
		output within the time specified by	
		P21.25 after positioning completes.	
		0: Don not keep; 1: Keep	
		Bit 15: Calculation insertion/interrupt	
		selection during positioning	
		0: Do not support changing the target	
		speed or position.	
		1: Support changing the target speed	
		or position.	
P21.17	Position set in digital mode	0-65535 (unit: tenfold)	0
		0: P21.19	
		1: Al1	
		2: Al2	
P21.18	Positioning speed setting	3: Al3	0
		4: High-speed pulse HDIA	
		5: High-speed pulse HDIB	
		6: EtherCAT communication	
P21.19	Positioning speed set in digital mode	0.0-100.0% (of the max. frequency)	20.0%
P21.20	Positioning ACC time	0.01–30.00s (relative to the max. frequency)	3.00s
P21.21	Positioning DEC time	0.01–30.00s (relative to the max. frequency)	3.00s
P21.47	Brake release current in position control	0.0–200.0%	25.0%

Function code	Name	Description	Setting
P90.00	Logic special for holding brake	0–1	1
P90.18	Forward brake closing frequency	0.00–20.00Hz	0.00Hz
P90.19	Reverse brake closing frequency	0.00–20.00Hz	0.00Hz
P90.22	Delay after forward brake release	0.000–5.000s	0.300s
P90.26	Delay after forward brake closing	0.000–5.000s	0.300s

Note: Generally, for single incremental positioning, P21.16 is set to 0x5042; for positional positioning, P21.16 is set to 0x184A.

5.1.1.5 Commissioning master/slave holding brake synchronization control (for winches)

In master/slave mode, if you need to perform brake release/closing for both the master and slave, refer to the following procedure:

- Set P90.04 to 1 on both the master and slave to enable the holding brake function for the master and slave.
- Set P28.00=1 for the master and P28.00=2 for the slave, and set P28.02 to select a master/slave mode.
- Set P28.14 to 0x11 to enable the master/slave holding brake synchronization function for the master and slave.
- Set relay holding brake output for the master and slave. If RO1 is connected to the holding brake contactor, set P06.03 to 49.
- Set the delay before forward brake closing and delay before reverse brake closing to 0 (that is, P90.24=0 and P90.25=0) for the master and slave.
- For other holding brake parameters, see sections 5.1.1.3 Commissioning brake in torque control
 to 5.1.3.3 Space voltage vector control application commissioning procedure. For other
 master/slave control parameters, see 5.5 Master/slave control.
- Perform trial run and check whether the holding brake timing is correct.

Note:

- In master/slave mode, you need to set the delay before forward brake closing and delay before reverse brake closing to 0; otherwise the master and slave will not synchronize.
- In situations where the master and slave are rigidly connected, the holding brake can be
 controlled only by the master, and the master/slave holding brake synchronization control can be
 disabled (for the master and slave, P28.14=0x00), while the holding brake logic of the slave is not

activated (P90.04=1 for the master, and P90.04=0 for the slave).

Master/slave holding brake synchronization control requires the following additional function codes to be set.

Function code	Name	Description	Setting
P28.00	Master/slave mode	O: Master/slave control is invalid. The local device is the master. C: The local device is the slave.	Master: 1 Slave: 2
P28.02	Master/slave control mode	0: Master/slave mode 0 1: Master/slave mode 1 2: Master/slave mode 2 3: Master/slave mode 3 4: Master/slave mode 4	For details, see 5.5 Master/slave control.
P28.14	Master/slave holding brake synchronization control	0x00–0x11 Ones place: Brake release synchronization 0: Invalid 1: Valid Tens place: Brake closing synchronization 0: Invalid 1: Valid	0x11

5.1.2 Commissioning steel wire rope (such as in a tower crane) lifting applications

5.1.2.1 Common wiring

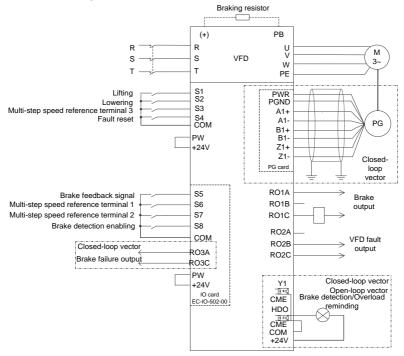


Figure 5-1 Wiring for lifting

Note: If the wiring is performed according to Figure 5-1 Wiring for lifting, most VFD parameters need no adjustment. If the onsite function terminals are inconsistent with the terminals shown in the figure, adjust the input and output terminal functions according to the actual wiring after selecting this application macro (P90.00=1, 2, or 9).

5.1.2.2 Commissioning procedure

- Check the wiring and ensure the wiring is proper.
- Set P00.18=1 to restore to default settings.
- 3. Set motor nameplate parameters in P02.
- 4. Set P00.15=2. When the keypad displays "-\text{FUN-"}. Press the \text{RUN} key to perform static autotuning.
- Set P90.00=1, set the encoder type parameter P20.00, set the pulse per resolution (PPR)
 parameter P20.01. Perform low-speed upward running. Check the value of P18.00. If the value is
 negative, the encoder direction is reversed. Then you only need to set P20.02=0x001.

- 6. Set P90.00=2 to select the closed-loop vector hoist lifting application macro.
- 7. Perform low-speed trial run.

5.1.2.3 Macro parameters (P90.00=2)

Function code	Name	Setting	Remarks
P00.00	Speed control mode	3	Closed-loop vector control mode
P00.01	Channel of running commands	1	Terminal
P00.03	Max. output frequency	100.00Hz	/
P00.04	Upper limit of running frequency	100.00Hz	/
P00.06	Setting channel of A frequency command	6	Multi-step speed running
P00.11	ACC time 1	6.0s	/
P00.12	DEC time 1	4.0s	/
P01.01	Starting frequency of direct start	0.00Hz	/
P01.15	Stop speed	0.10Hz	/
P01.24	Stop speed delay	1.0s	/
P03.00	Speed-loop proportional gain 1	30.0	/
P03.01	Speed-loop integral time 1	0.100s	/
P03.06	Speed loop output filter	1	/
P03.10	Current-loop integral coefficient I	3500	/
P05.03	Function of S3	18	Multi-step speed 3
P05.04	Function of S4	7	Fault reset
P06.03	RO1 output selection	49	Brake output
P08.28	Auto fault reset count	1	/
P10.02	Multi-step speed 0	3.0%	/
P10.04	Multi-step speed 1	8.0%	/
P10.06	Multi-step speed 2	33.0%	/
P10.08	Multi-step speed 3	50.0%	/
P10.10	Multi-step speed 4	70.0%	/
P10.12	Multi-step speed 5	90.0%	/
P10.14	Multi-step speed 6	0.6%	Slow speed at 0.6Hz
P10.16	Multi-step speed 7	2.0%	Slow speed at 2.0Hz
P11.08	VFD/motor OL/UL pre-alarm selection	0x021	Enable underload protection to
P11.11	Underload pre-alarm detection threshold	1%	enhance equipment safety. (Common functions for tower cranes need to be set based on
P11.12	Underload pre-alarm detection time	1.00s	requirements.)

Function	Name	Setting	Remarks
code			
P11.14	Speed deviation detection value	20.0%	/
P23.15	Enabling PI parameter switchover for start/stop in vector mode	1	Enable
P25.01	Function of S5	75	Brake feedback signal
P25.02	Function of S6	16	Multi-step speed 1
P25.03	Function of S7	17	Multi-step speed 2
P25.04	Function of S8	85	Enable brake detection
P25.10	Expansion card input terminal polarity	0x01	1
P26.04	RO3 output selection	57	Brake failure alarm
P90.04	Enabling brake-oriented logic	1	The brake is controlled by the VFD.
P90.14	Forward brake release torque	30.0%	Corresponding to the motor rated torque
P90.15	Reverse brake release torque	20.0%	Corresponding to the motor rated torque
P90.16	Forward brake release frequency	0.40Hz	/
P90.17	Reverse brake release frequency	0.40Hz	/
P90.18	Forward brake closing frequency	0.20Hz	/
P90.19	Reverse brake closing frequency	0.20Hz	/
P90.20	Delay before forward brake release	0.100s	1
P90.30	Torque verification fault detection time	2.000s	1
P90.31	Enabling the monitoring on brake status	1	Enable the brake current monitoring (and brake feedback detection).
P91.08	Light/heavy load speed regulation selection	3	
P91.18	Load limit T1 in stepped speed limit upward running	65.0%	
P91.19	Restricted frequency f1 in stepped speed limit upward running	55.00Hz	Stepped speed limit (Common functions for tower cranes need to be set based on
P91.20	Load limit T2 in stepped speed limit upward running	40.0%	requirements.)
P91.21	Restricted frequency f2 in stepped speed limit upward	75.00Hz	

Function code	Name	Setting	Remarks
	running		
P91.26	Load limit T1 in stepped speed limit downward running	50.0%	
P91.28	Load limit T2 in stepped speed limit downward running	45.0%	
P91.29	Restricted frequency f2 in stepped speed limit downward running	70.00Hz	
P93.02	Zero servo protection mode	1	Zero servo input slows down.

5.1.2.4 Points for attention

- If you only want to check whether the VFD runs properly, set P90.00=0 (Common application mode). When you perform the test without connecting to a motor, to make the output frequency equal the set frequency, set P00.00=2 (Space voltage vector control mode).
- If you perform empty-load commissioning, set P90.00 to 1 (Lifting in open-loop vector control), set P11.08 to 0x000 (to shield the underload protection function), and set P90.14 and P90.15 to 0 to prevent the torque verification fault reporting caused by empty load. In addition, if no external braking resistor is connected, you need to increase the ACC/DEC time to prevent the bus overvoltage fault reporting caused by too fast stop.
- If there is a brake feedback signal, set P25.02 to 75, and the macro has set this parameter by default. In addition, set P90.31 to 1. If there is no brake feedback signal, set P90.31 to 0 to prevent the misreporting of a brake feedback fault.
- During onsite commissioning, if the VFD terminal signal upward/downward running command is inconsistent with the load lifting/lowering direction, adjust any two phase sequences of VFD output terminals U, V, and W.
- If PLC control is used, speed signal and other input and output signal functions need to be adjusted according to the actual control logic.
- This macro can meet the requirements of most lifting application cases, and the performance parameters have been optimized and do not need to be adjusted in most cases. If an exception occurs, see the function parameter chapter for adjustment or contact the technical support.

5.1.2.5 Macro parameters (P90.00=1)

According to the closed-loop vector control parameter table, you can switch to the open loop vector control by modifying the following parameters or setting P90.00=1.

Function code	Name	Setting	Remarks
P00.00	Speed control mode	1	Sensorless vector control (SVC)

Function code	Name	Setting	Remarks
			mode 1
P01.01	Starting frequency of direct start	1.00Hz	/
P01.15	Stop speed	1.50 Hz	/
P10.02	Multi-step speed 0	0.0%	/
P10.14	Multi-step speed 6	0.0%	/
P10.16	Multi-step speed 7	0.0%	/
P11.11	Underload pre-alarm detection threshold	10%	1
P23.15	Enabling PI parameter switchover for start/stop in vector mode	0	Disable
P26.04	RO3 output selection	0	Invalid
P90.14	Forward brake release torque	40.0%	Corresponding to the motor rated torque
P90.15	Reverse brake release torque	30.0%	Corresponding to the motor rated torque
P90.16	Forward brake release frequency	2.50Hz	/
P90.17	Reverse brake release frequency	2.50Hz	/
P90.18	Forward brake closing frequency	1.50Hz	/
P90.19	Reverse brake closing frequency	0.20Hz	/
P90.20	Delay before forward brake release	0.000s	1
P90.30	Torque verification fault detection time	6.000s	/
P91.08	Light load speed boost function selection	2	Constant power speed limit (Common functions for tower cranes need to be set based on requirements.)
P93.02	Zero servo protection mode	0	Disable zero servo

Note: Some parameters are consistent with the closed-loop vector application macro, and this macro table only lists inconsistencies.

5.1.2.6 Switching between closed-loop vector control lifting macro parameters and open-loop vector control lifting parameters

In closed-loop vector control, if an encoder exception occurs, you can switch closed-loop vector application macro parameters to open-loop vector application macro parameters through terminals or communication. The quick application macro parameter switchover can be performed as follows:

- Set P90.00=2 (Lifting in closed-loop vector control), and set P90.01=1 (Lifting in open-loop vector control).
- 2. Set P90.03=5 (Switch to SVC1 control).
- 3. Select S terminal function 62 (Switch to to SVC1 control).
- When the S terminal is invalid, the motor uses P90.00=2; when the S terminal is valid, the motor uses P90.01=1.

5.1.2.7 Snail speed

Some operating consoles have a snail speed function. If you need to use the function, perform the commissioning as follows:

- 1. Perform wiring according to the snail speed terminal description on the operating console.
- Determine the multi-step speed corresponding to the snail speed function, and set the running frequency corresponding to the multi-step speed.

Note: The snail speed frequency must be higher than the brake release frequency.

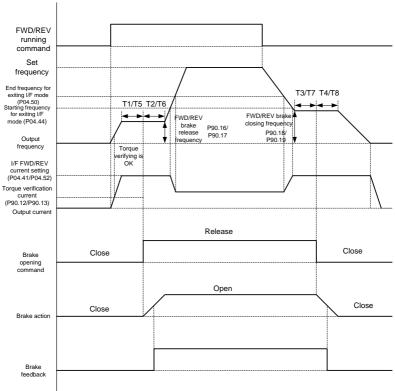
5.1.3 Commissioning gear-rack lifting applications (such as in elevators and hoists)

5.1.3.1 Common wiring

See section 5.1.2 Commissioning steel wire rope (such as in a tower crane) lifting applications.

5.1.3.2 Closed-loop vector control application commissioning procedure

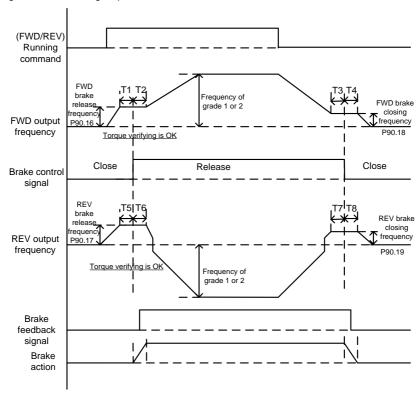
See 5.1.2 Commissioning steel wire rope (such as in a tower crane) lifting applications.


5.1.3.3 Space voltage vector control application commissioning procedure

- 1. Set P90.04 to 1 to enable the holding brake function.
- 2. Set relay brake output. If RO2 is connected to the braking contactor, set P06.04 to 49.
- If the brake contactor has the feedback function, connect the brake feedback wire to an input terminal, for example, S3. Then set P05.03 to 75 indicating brake feedback signal. Set P90.31 to 1 to enable brake feedback detection. If the brake contactor does not provide the feedback function, ignore this.
- 4. In lifting application, enable the I/F function, set P04.40 to 1, set P04.41, and set P04.52. In horizontal moving application, you can choose whether to enable the I/F function.
- Set P90.12 (Forward brake release current) and P90.13 (Reverse brake release current) to ensure there is enough torque before the brake is opened.
- 6. Set the holding brake timing, including the forward/reverse holding brake release frequency, forward/reverse holding brake closing frequency, delay before forward holding brake release (T1), delay before reverse holding brake release (T5), delay after forward holding brake release (T2), delay after reverse holding brake release (T6), delay before forward holding brake closing (T3), delay before reverse holding brake closing (T7), delay after forward holding brake closing (T4), and delay after reverse holding brake closing (T8).

Note: If delay before reverse brake release (T5), delay after reverse brake release (T6), delay before reverse brake closing (T7), and delay after reverse brake closing (T8) are set to 0, the delay parameters for forwarding running are used.

1. Perform trial run and check whether the holding brake timing is correct.

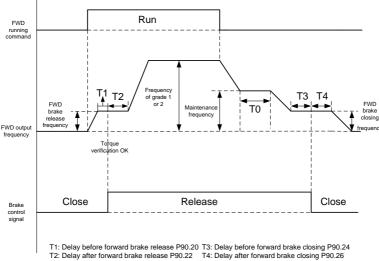

T1: Delay before forward brake release P90.20 T3: Delay before forward brake closing P90.24

Delay deriver furwal to cliane Telease P30.22 17. Delay after forward brake closing P30.25.
 Delay after forward brake release P30.21 17. Delay before reverse brake closing P30.25.
 Delay before reverse brake release P30.21 17. Delay before reverse brake closing P30.25.
 Delay after reverse brake release P30.21 17.

Adjust braking comfort, which can be implemented by using the following methods.

A. In I/F mode, you can decrease the brake release frequency and brake closing frequency and adjust the T1–T8 delay parameters in the timing sequence so that the impact is reduced. Note that the brake release frequency and brake closing frequency are greater than P01.01 (Starting frequency) and P01.15 (Stop speed) in most cases.

B. During the reverse-running stop, you can apply the forward torque, that is, for reverse-running start, you can perform forward brake release and then perform reverse running; for reverse-running stop, you can switch reverse running to forward running, close the brake, and then perform forward-running stop. This ensures there is no slip is felt during reverse start or stop. Forward torque is enabled by setting P90.05. The timing sequence is as follows:

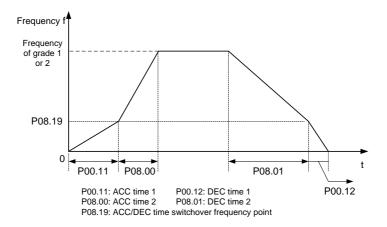

T1: Delay before forward brake release P90.20 T3: Delay before forward brake closing P90.24

T2: Delay after forward brake release P90.22 T4: Delay after forward brake closing P90.26

T5: Delay before reverse brake release P90.21 T7: Delay before reverse brake closing P90.25

T6: Delay after reverse brake release P90.23 T8: Delay after reverse brake closing P90.27

C. During the stop process, you can enable the maintenance frequency so that the device runs at a low speed within a small period of time before the stop, since impact may be caused if the device directly stops at a high speed. The maintenance frequency for stop can be enabled by setting P90.29 to a value greater than 0. You can set the maintenance frequency through P90.28. The timing diagram is as follows:



D. If two segments of ACC/DEC time are used, you can increase ACC/DEC time at low frequency running to ensure smoothness at low-frequency start or stop. You can set P08.19 (Switching frequency of ACC/DEC time) to a value greater than 0 to enable two segments of ACC/DEC time and then the ACC/DEC time 1 (P00.11 and P00.12) and ACC/DEC time 2 (P08.00 and P08.01) are used.

T0: Maintenance frequency hold time for DEC stop P90.29

Maintenance frequency: Maintenance frequency for DEC stop P90.28

FWD brake release/closing frequency: P90.16/P90.18

5.1.3.4 Space voltage vector control parameters

The following lists only holding brake related parameters. Other terminal related parameters need to be set based on the actual requirements.

Function code	Name	Setting	Remarks
P00.00	Speed control mode	1	Space voltage vector control mode
P00.11	ACC time 1	8.0s	/
P00.12	DEC time 1	8.0s	/
P04.01	Torque boost of motor 1	0.1%	Disable automatic torque boost.
P04.02	Torque boost cut-off of motor 1	0.1%	/
P04.40	Enabling I/F mode for AM 1	1	Enable the I/F mode.
P06.03	RO1 output selection	49	Brake output
P11.08	VFD/motor OL/UL pre-alarm	0x021	Enable underload protection to
P11.08	selection		enhance equipment safety.
P11.11	Underload pre-alarm detection threshold	15%	/
P90.04	Enabling brake-oriented logic	1	The brake is controlled by the VFD.
P90.12	Forward brake release current	50.0%	Corresponding to the motor rated current
P90.13	Reverse brake release current	50.0%	Corresponding to the motor rated current
P90.16	Forward brake release frequency	1.50Hz	/
P90.17	Reverse brake release frequency	1.50Hz	/
P90.18	Forward brake closing frequency	1.50Hz	/

Function code	Name		Remarks
P90.19	Reverse brake closing frequency	1.50Hz	/

5.1.4 Commissioning lifting applications in mine hoists, winches, and drawworks

5.1.4.1 Common wiring

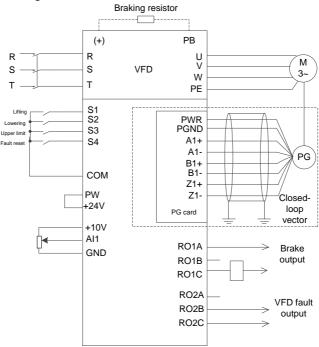


Figure 5-2 Wiring for applications in mining hoists, winches, and drawworks (recommended analog reference 0V–10V)

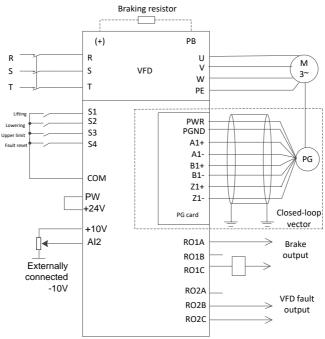


Figure 5-3 Wiring for applications in mining hoists, winches, and drawworks (using analog reference -10V-10V)

5.1.4.2 Commissioning procedure

- 1. Check the wiring and ensure the wiring is proper.
- 2. Set P00.18=1 to restore to default settings.
- 3. Set motor parameters in P02.
- Set P00.15=2. When the keypad displays "-FUN-". Press the RUN key to perform static autotuning.
- Set the encoder type parameter P20.00, set the pulse per resolution (PPR) parameter P20.01.
 Perform low-speed upward running. Check the value of P18.00. If the value is negative, the encoder direction is reversed. Then you only need to set P20.02=0x001.
- 6. Set P90.00=11 to select the closed-loop vector controlled winch application macro.
- 7. Perform low-speed trial run.

5.1.4.3 Closed-loop vector controlled winch application macro parameters (P90.00=11)

Table 5-1 Parameter settings for the closed-loop vector controlled winch application macro (recommended analog reference 0V–10V)

Function code	Name		Remarks	
P00.00	Speed control mode	3	Closed-loop vector control mode	
P00.01	Channel of running commands	1	Terminal	
P00.06	Setting channel of A frequency command	1	Al1	
P00.07	Setting channel of B frequency command	0	Keypad	
P00.11	ACC time 1	10.0s	/	
P00.12	DEC time 1	5.0s	/	
P01.15	Stop speed	0.20 Hz	/	
P05.03	Function of S3	64	Upward position limit	
P05.04	Function of S4	5	Fault reset	
P05.24	Al1 lower limit 0.20V		0.00V–P05.26. Adjust the value according to the actual situation.	
P05.28	Al1 input filter time	0.100s	0.000s-10.000s	
P06.03	RO1 output selection	49	Brake output	
P06.04	RO2 output selection	5	VFD in fault	
P90.04	Enabling brake-oriented logic	1	The brake is controlled by the VFD.	
P90.14	Forward brake release torque	50.0%	Corresponding to the motor rated torque	
P90.15	Reverse brake release torque	50.0%	Corresponding to the motor rated torque	
P90.16	Forward brake release		/	
P90.17	P90.17 Reverse brake release frequency		/	
P90.18 Forward brake closing frequency		1.00Hz	/	
P90.19 Reverse brake closing frequency		1.00Hz	/	

Function code	Name	Setting	Remarks
P00.06	Setting channel of A frequency command	2	AI2
P05.29	Al2 lower limit	-10.00V	-10.00V-P05.31
P05.30	P05.30 Corresponding setting of Al2 lower limit		-300.0%–300.0%
P05.31	P05.31 Al2 middle value 1		P05.29-P05.33
P05.32	Corresponding setting of Al2 middle value 1	0.0%	-300.0%–300.0%
P05.33	Al2 middle value 2	0.10V	P05.31-P05.35
P05.34	Corresponding setting of Al2 middle value 2	0.0%	-300.0%–300.0%
P05.35	P05.35 Al2 upper limit		P05.33-10.00V
P05.36 Corresponding setting of Al2 upper limit		100.0%	-300.0%–300.0%
P05.37	P05.37 Al2 input filter time		0.000s-10.000s

Table 5-2 Frequency giving parameters when using analog reference -10V-10V

5.1.4.4 Operating lever use instructions when using the -10V-10V analog reference

When the analog reference is in the range of -10V–10V, Al2 must be used, the values of P05.29 (Al2 lower limit), P05.30 (Al2 middle value 1), P05.31 (Al2 middle value 2), and P05.35 (Al2 upper limit) must be in increasing order. Figure 5-4 Corresponding frequency settings of Al2 analog input (analog reference of -10V–10V) shows the mapping between analog references and frequency settings.

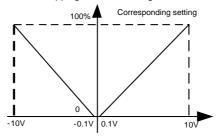


Figure 5-4 Corresponding frequency settings of Al2 analog input (analog reference of -10V-10V)

5.1.4.5 Open-loop vector controlled winch application macro parameters (P90.00=12)

The following lists the parameters inconsistent with closed-loop vector controlled winch application macro parameters (P90.00=11).

Function Name Setting Remarks code Sensorless vector control (SVC) mode P00.00 Speed control mode P01.15 Stop speed 0.50 Hz / Forward brake release P90.16 2.00Hz frequency Reverse brake release / P90.17 2.00Hz frequency / Forward brake closing P90.18 2.00Hz frequency Reverse brake closing / P90.19 2.00Hz

Table 5-3 Parameter settings for the open-loop vector controlled winch application macro (recommended analog reference 0V–10V)

The settings of frequency giving parameters when using analog reference -10V–10V are not related to P00.00

5.1.4.6 Points for attention

frequency

- If you only want to check whether the VFD runs properly, set P90.00=0 (Common application mode).
- If you perform empty-load commissioning, set P90.00 to 11 or 12, and set P90.14 and P90.15 to
 0, preventing the VFD from reporting the torque verification fault tPF due to empty load. If no
 braking resistor is externally connected, increase the ACC/DEC time, preventing the VFD from
 reporting the bus overvoltage fault due to fast stop.
- During onsite commissioning, if the VFD terminal signal upward/downward running command is inconsistent with the load lifting/lowering direction, adjust any two phase sequences of VFD output terminals U, V, and W.
- 4. This macro (P90.00=11 and P90.00=12) can meet the requirements of most winch application cases, and the performance parameters have been optimized and do not need to be adjusted in most cases. If an exception occurs, see the function parameter chapter for adjustment or contact the technical support.

5.1.4.7 Open-loop vector controlled draw-work application parameters

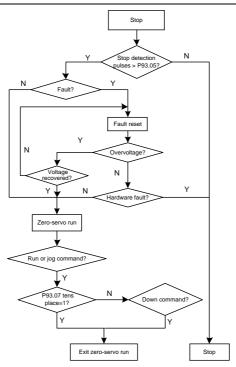
Table 5-4 Open-loop vector controlled draw-work application parameters

Function code	Name	Setting	Remarks
P00.00	Speed control mode	1	Sensorless vector control (SVC) mode 1

Function code	Name		Remarks
P00.01	Channel of running commands		Terminal
P00.06	Setting channel of A frequency command	1	Al2
P00.11	ACC time 1	18.0s	/
P00.12	DEC time 1	12.0s	/
P01.01	Starting frequency of direct start	0.50Hz	Less than brake release frequency
P01.08	Stop mode	1	Coast to stop
P03.00	Speed-loop proportional gain 1	8.0	I
P03.03	Speed-loop proportional gain 2	10.0	1
Electromotive torque		200.0%	I
P03.21	Braking torque upper limit set through keypad	200.0%	1
P05.01	Function of S1	1	FWD run
P05.02	Function of S2	1	Reverse running
P05.03	Function of S3	7	Fault reset
P06.03	RO1 output selection	49	Brake output
P06.04	RO2 output selection	5	VFD in fault
P11.06	Automatic current limit threshold	200.0%	1
P11.07	Frequency decrease ratio in current limiting	0.50Hz/s	1
P11.25	Enabling VFD overload integral	1	1
P11.26	Enabling special functions	0x001	1
P90.04	P90.04 Enabling brake-oriented logic 1 The brake is controlled		The brake is controlled by the VFD.
P90.12	Forward brake release		Corresponding to the motor rated current
P90.13	Reverse brake release current	1.0%	Corresponding to the motor rated current

Function code	Name	Setting	Remarks
P90.16	Forward brake release 0.70Hz		You can increase it properly if sliding
	frequency	0.7 0.7.12	may occur at half the ramp.
P90.17	Reverse brake release	0.70Hz	You can increase it properly if sliding
F90.17	frequency	0.70HZ	may occur at half the ramp.
P90.22	Delay after forward brake	1.40s	Adjust it appropriately according to the
F90.22	release	1.405	holding brake action time.
P90.23	Delay after reverse brake	1.40s	Adjust it appropriately according to the
F90.23	release	1.405	holding brake action time.

5.1.5 Commissioning the zero servo function


5.1.5.1 Zero servo function description

The zero servo function needs to be used in closed-loop vector control. During stop, the VFD checks whether the pulse value is greater than P93.05. If yes, the VFD reports the holding brake failure alarm A-bS, and the alarm can be configured with relay action output.

After reporting A-bS, it selects an action according to the ones place of P93.02 after the delay time specified by P93.06 (if the pulse value during this period is greater than 3 times the value specified by P93.05, this delay time is skipped:

- If P93.02 ones place=1, the motor runs down slowly at the frequency specified by P93.03, after the time specified by P93.04 elapses, the motor coasts to stop and performs detection again. This process will be repeated.
- If P93.02 ones place=2, the motor keeps zero speed running. This mode makes the motor locked at the positioning function in stopped state. This means even if the motor is subjected to external forces, the VFD keeps the motor unmoved and the load stopped at the position where it stops.
- If P93.02 ones place=3, the motor keeps zero speed running for a period specified by P93.07, and later it automatically switches to the zero speed slow lowering down mode.

When the motor runs in zero serve state, it can choose whether to exit according to the tens place value of P93.02.

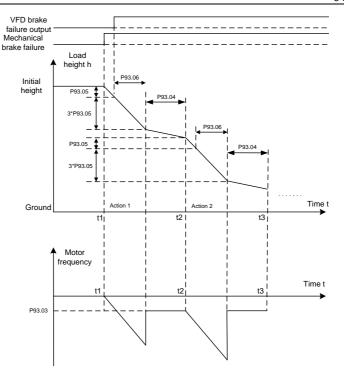
Note:

- At certain faults that cannot be reset, such as VFD internal hardware damaged, zero servo cannot be entered. At the faults that can be reset, with zero servo conditions met, zero servo can be entered.
- Every time zero servo is exited, torque verification is not performed only at the first running command giving, which means the verification is performed at all the following running command giving.
- When P93.02 ones place=2, the motor becomes hot, the fan cannot be mounted at the same shaft as the motor, and it must be independently controlled.

The following faults cannot be reset:

Fault code	Fault type	Fault code	Fault type
OUt1	Inverter unit U-phase protection	ETH1	To-ground short-circuit fault 1
OUt2	Inverter unit V-phase protection	ETH2	To-ground short-circuit fault 2
OUt3	Inverter unit W-phase protection	STO	Safe torque off
107	Decreased and the sector of	OTL 4	Exception occurred to safe circuit
UV	Bus undervoltage fault	STL1	of channel 1

Fault code	Fault type	Fault code	Fault type
SPI	ODI — Dhana lana an innut aida		Exception occurred to safe circuit
SPI	Phase loss on input side	STL2	of channel 2
SPO	Dhood loop on output aide	STL3	Exception occurred to channel 1
370	Phase loss on output side	SILS	and channel 2
OH1	Rectifier module overheating	OT	Motor overtemperature fault
OH2	DH2 Inverter module overheat		VFD disabled
EF	External fault	٨؞٦٦	Analog speed reference
EF	External fault	AdE	deviation fault
ItE	Current detection fault	OtE1	PT100 overtemperature
bCE	Braking unit/resistor fault	OtE2	PT1000 overtemperature


After determining the hook slip protection distance, you can calculate the encoder pulses specified by P93.05 corresponding to the distance. The calculation principle is similar to that for height measuring in section 5.1.6 Height measuring. The formula is as follows.

In extreme cases (if the value of pulse change during zero servo determination is greater than 3 times P93.05, P93.06 is skipped directly), the zero servo is triggered until the actual slippage is 4 times the slip protection distance. If P93.06 is set to 0, zero servo is triggered at the hook slip protection distance. At this time, the load falling speed is as follows:

Load falling speed =
$$\sqrt{2g * Actual hook slip distance}$$

Example: Zero servo slow lowering mode (P93.02 ones place=1)

Slow lowering action period in this mode = Zero servo action taking delay process (coasting to stop) + Slow lowering (controlled run)

5.1.5.2 Zero servo function codes

Function code	Name	Description	Setting
P00.00	Speed control mode	3: Closed-loop vector control mode	3
P93.02	Zero servo protection mode selection and exit selection	0x00–0x23 Ones place: Zero servo protection mode selection 0: Disable zero servo 1: Lower slowly when zero servo is switched on 2: Zero servo input is always valid (keep running at zero speed) 3: Lower slowly when the zero speed maintenance time is reached Tens place: Zero servo mode exit selection 0: Only for downward running 1: Both for upward and downward running 2: Only for reset commands	0x01

Function code	Name	Description	Setting
P93.03	Slow lowering frequency at zero servo	Setting range: P90.17 (Reverse brake release frequency)–8.00Hz	4.00Hz
P93.04	Slow lowering hold time at zero servo	Setting range: 0.0s-30.0s	2.0s
P93.05	Zero servo tolerance pulse threshold	Setting range: 0–60000	20000
P93.06	Zero servo action taking delay	0–20.000s	0.500s
P93.07	Zero-servo zero-speed hold time	0–60mins	10mins

5.1.6 Height measuring

5.1.6.1 Commissioning description Internal measuring (Motor encoder)

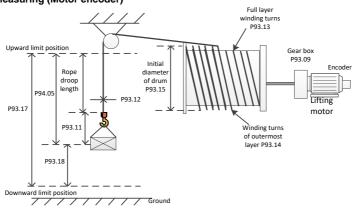


Figure 5-5 Internal measuring (motor encoder), using pulleys

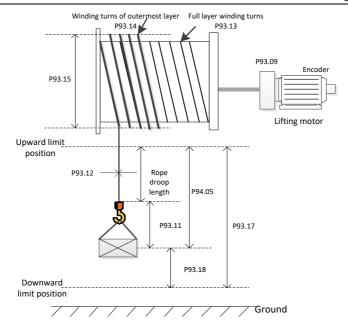


Figure 5-6 Internal measuring (motor encoder), without pulleys

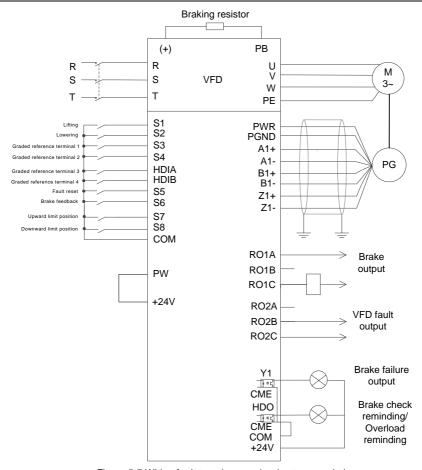


Figure 5-7 Wiring for internal measuring (motor encoder)

For wiring for internal measuring (motor encoder), you need to set the suspension ratio P93.10 when pulleys are used, so that the height can be correctly measured in the closed-loop mode. Then the measured encoder pulse count is used to calculate the actual running distance of the motor. Before first running, the upward limit position must be calibrated. You need to use a PG card to connect the encoder (see A.6 for specific connection method), set P00.00=3 (Closed-loop control mode), P93.08=1 to enable internal measuring (motor encoder), and then set winding drum and cable parameters such as P93.09, P93.10, P93.11, P93.12, P93.13, P93.14 and P93.15.

The procedure for first running is as follows:

1. Set the upward limit terminal. For example, set P25.03=64, which indicates the S7 terminal is

- used as for upper limit input.
- Enable forward running (upward) and stop when the upward limit position is reached. Then perform calibration.
- Record the values of P93.14 (Initial turns of drum winding) and P93.13 (Per-layer turns of drum winding), and clear the settings of P94.05, P94.06, and P94.07 to 0.
- 4. After the calibration, send the running command through the S2 terminal to run downward. Check the values of PP94.05 (Measured height), P94.06 (High bits of height measuring pulse count value), and P94.07 (Low bits of height measuring pulse count value).

If the downward limit position needs to be used as the reference point, the procedure for first running is as follows:

- Set the upward and downward limit terminals S7 and S8. For example, set P25.03=64 and P25.04=65.
- Enable forward running (upward) and stop when the upward limit position is reached. Then perform calibration.
- Record the values of P93.14 (Initial turns of drum winding) and P93.13 (Initial diameter of drum/pulley diameter), and clear the settings of P94.05, P94.06, and P94.07 to 0.
- 4. The calibration is completed, which indicates proper running. P93.17 displays the height from the downward limit position to the upward limit position, P93.18 displays the height using the downward limit position as the reference point (the height is 0 at the downward limit position, the height is positive when it is above the downward limit position, the height is negative when it is under the downward limit position), and P94.05 displays the height using the upward limit position as the reference point (the height is 0 at the upward limit position, and only downward running is allowed when the upward limit position is reached, and P94.05 indicates the rope droop length when the upward limit position is not reached).

External measuring (HDI)

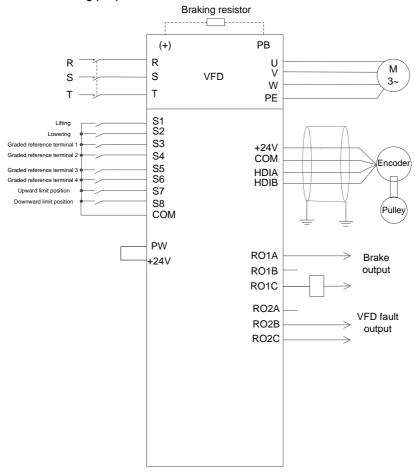


Figure 5-8 Wiring for external measuring (HDI) (In open-loop mode)

Note: During external measuring (HDI), only 24V incremental encoders can be used to measure pulley rotational speeds.

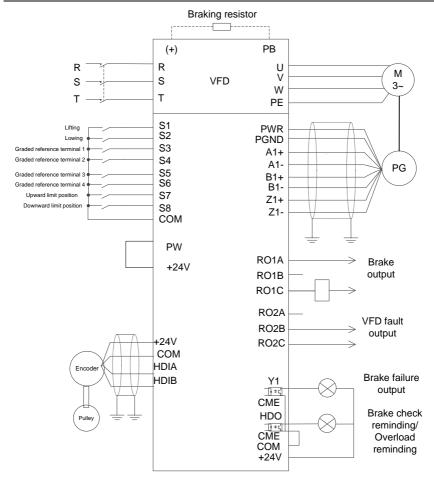


Figure 5-9 Wiring for external measuring (HDI) (In closed-loop mode)

Note: During external measuring (HDI), only 24V incremental encoders can be used to measure pulley rotational speeds.

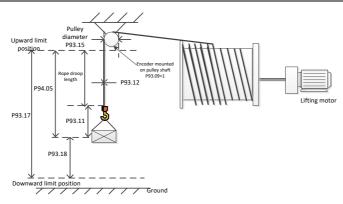


Figure 5-10 External measuring (HDI)

You need to set P05.38=2 and P05.44=2 to connect the encoder to HDIA and HDIB. In open/closed-loop mode, the encoder measures the encoder pulse count at the pulley side to calculate the actual cable running distance of pulley. Before first running, the upward limit position must be calibrated.

The procedure for first running is as follows:

- Set the upward limit terminal. For example, set P25.03=64, which indicates the S7 terminal is used as for upper limit input.
- Enable forward running (upward) and stop when the upward limit position is reached. Then perform calibration. Clear the settings of P19.15, P19.16, and P19.17 to 0.
- After the calibration, send the running command through the S2 terminal to run downward. Check
 the values of PP94.05 (Measured height), P94.06 (High bits of height measuring pulse count
 value), and P94.07 (Low bits of height measuring pulse count value).

If the downward limit position needs to be used as the reference point, the procedure for first running is as follows:

- Set the upward and downward limit terminals S7 and S8. For example, set P25.03=64 and P25.04=65.
- Enable forward running (upward) and stop when the upward limit position is reached. Then perform calibration. Clear the settings of P19.15, P19.16, and P19.17 to 0.
- Send the running command through the S2 terminal to run downward only if the downward limit terminal S8 is valid. P93.17 displays the height from the upward limit position to the downward limit position and P93.18 displays 0.
- 4. The calibration is completed, which indicates proper running. P93.17 displays the height from the downward limit position to the upward limit position, P93.18 displays the height using the downward limit position as the reference point (the height is 0 at the downward limit position, the

height is positive when it is above the downward limit position, the height is negative when it is under the downward limit position), and P94.05 displays the height using the upward limit position as the reference point (the height is 0 at the upward limit position, and only downward running is allowed when the upward limit position is reached, and P94.05 indicates the rope droop length when the upward limit position is not reached).

Note: During external measuring (HDI) (for the encoder to measuring the pulley rotational speed), P93.09 indicates the transmission ratio between the encoder and pulley, while P93.15 indicates the pulley diameter.

5.1.6.2 Parameters about height measuring

Table 5-5 Parameters about internal measuring (motor encoder)

Function			
code	Name	Description	Setting
		0: SVC 0 1: SVC 1	
		2: Space voltage vector control mode	
P00.00	Speed control mode	3: Closed-loop vector control mode	3
		Note: Before using a vector control mode (0, 1,	
		or 3), enable the VFD to perform motor	
		parameter autotuning first.	
	Channel of running	0: Keypad	
P00.01	Channel of running commands	1: Terminal	1
		2: Communication	
P05.01	Function of S1	1: Run forward	1
P05.02	Function of S2	2: Run reversely	2
P25.03	Function of S7	64: Limit of forward run (upward)	64
P25.04	Function of S8	65: Limit of reverse run (downward)	65
P20.15	Speed	0: Measuring speed by PG card/Measuring height	0
	measurement mode	•	
		0–1 0: Disable	
		Enable internal measuring (motor encoder)	
		(In closed-loop mode, the encoder measures the	
	Enabling height	speed and height.)	
P93.08	measuring	2: Enable external measuring (HDI)	1
	-	(In open- and closed-loop modes, the pulley	
		encoder measures the height.)	İ
		Note: When P93.08=2, P20.15=0 indicates HDI	
		measuring the height.	

Function code	Name	Description	Setting
P93.09	Mechanical transmission ratio	0.01–300.00	10.00
P93.10	Suspension ratio	1–4	1
P93.11	Rope length compensation	0.00-50.00m	0.00m
P93.12	Cable diameter	0.1–100.0m	10.0mm
P93.13	Per-layer turns of drum winding	1–200	30
P93.14	Initial turns of drum winding	0–P93.11 (Per-layer turns of drum winding)	0
P93.15	Initial diameter of drum	100.0–2000.0mm (Max. drum diameter in upward limit, including cable thickness)	600.0mm
P93.16	Enabling upward/downward limit position check	0x00–0x11 Ones place: 0: The upward limit position is not reached. 1: The upward limit position is reached. Tens place: 0: The downward limit position is not reached. 1: The downward limit position is reached. Note: Used for height measuring without upward or downward limit device.	0x00
Height sta	atus check		
P93.17	Total height measured	0.00–655.35m (Total height measured from the upward limit position to the downward limit position)	0.00m
P93.18	Measured height 1	-50.00–655.35m (Using the downward limit position as the reference point)	0.00m
P94.05	Measured height	0.00–655.35m (Hook lowering distance using the upward limit position as the reference point)	0.00m
P94.06	High bits of height measuring pulse count value	0–65535	0
P94.07	Low bits of height measuring pulse count value	0–65535	0

Table 5-6 Parameters about external measuring (HDI)

Function code	Name	Description	Setting
P00.00	Speed control mode	0: SVC 0 1: SVC 1 2: Space voltage vector control mode 3: Closed-loop vector control mode Note: Before using a vector control mode (0, 1, or 3), enable the VFD to perform motor	2
P00.01	Channel of running commands	parameter autotuning first. 0: Keypad 1: Terminal 2: Communication	1
P05.00	HDI input type	0x00–0x11 Ones place: HDIA input type 0: HDIA is high-speed pulse input 1: HDIA is digital input Tens place: HDIB input type 0: HDIB is high-speed pulse input 1: HDIB is digital input	0x00
P05.01	Function of S1	1: Run forward	1
P05.02	Function of S2	2: Run reversely	2
P20.15	Speed measurement mode	0: Measuring speed by PG card/Measuring height locally	0
P25.03	Function of S7	64: Limit of forward run (upward)	64
P25.04	Function of S8	65: Limit of reverse run (downward)	65
P05.38	HDIA high-speed pulse input function selection	2: Input set through encoder, used together with HDIB	2
P05.44	HDIB high-speed pulse input function selection	2: Input set through encoder, used together with HDIA	2
P93.08	Enabling height measuring	0-1 0: Disable 1: Enable internal measuring (motor encoder) (In closed-loop mode, the encoder measures the speed and height.) 2: Enable external measuring (HDI) (In open- and closed-loop modes, the pulley encoder measures	2

Function code	Name	Description	Setting
		the height.)	
P93.09	Mechanical transmission ratio	0.01–300.00	1.00
P93.10	Suspension ratio	1–4	1
P93.11	Rope length compensation	0.00–50.00m	0.00m
P93.12	Cable diameter	0.1–100.0m	10.0mm
P93.15	Pulley diameter	100.0–2000.0mm	600.0mm
Height sta	atus check		
P93.17	Total height measured	0.00–655.35m (Total height measured from the upward limit position to the downward limit position)	0.00m
P93.18	Measured height 1	-50.00–655.35m (Using the downward limit position as the reference point)	0.00m
P94.05	Measured height	0.00-655.35m (hook lowering distance)	0.00m
P94.06	High bits of height measuring pulse count value	0–65535	0
P94.07	Low bits of height measuring pulse count value	0–65535	0

5.1.7 Commissioning the conical motor function

5.1.7.1 Wiring

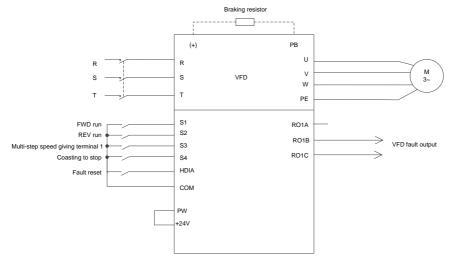


Figure 5-11 Wiring for the conical motor

Note: If the wiring is performed according to Figure 5-11 Wiring for the conical motor, most VFD parameters need no adjustment. If the onsite function terminals are inconsistent with the terminals shown in the figure, adjust the input and output terminal functions according to the actual wiring after selecting this application macro.

5.1.7.2 Commissioning procedure

- 1. Check the wiring and ensure the wiring is proper.
- 2. Set P00.18=1 to restore to default settings.
- 3. Set motor parameters in P02.
- 4. Set P90.00=5 to select the conical motor function macro.
- 5. Perform low-speed trial run.

5.1.7.3 Conical motor application macro parameters (P90.00=5)

Function code	Name	Setting	Remarks
P00.01	Channel of running commands	1	Terminal
P00.06	Setting channel of A frequency command	6	Multi-step speed running
P00.11	ACC time 1	3.0s	Time taken to accelerate from 0Hz to the max. frequency.
P00.12	DEC time 1	2.0s	Time taken to decelerate from the max. frequency to 0Hz.

Function code	Name	Setting	Remarks
P01.01	Starting frequency of direct start	2.00Hz	2.00Hz
P05.00	HDI input type	0x01	HDIA is digital input.
P05.03	Function of S3	16	Multi-step speed terminal 1
P05.04	Function of S4	6	Coast to stop
P05.05	Function of HDIA	7	Fault reset
P06.03	RO1 output selection	5	Fault output
P10.02	Multi-step speed 0	50.0%	50% of the max. output frequency P00.03
P10.04	Multi-step speed 1	100.0%	100% of the max. output frequency P00.03
P91.00	Enabling the conical motor function	1	Enabling the conical motor function

5.1.7.4 Points for attention

- If you only want to check whether the VFD runs properly, set P90.00=0 (Common application mode).
- If the direction is incorrect when the heavy load runs upward during lifting in forward running mode, adjust any two phase sequences of VFD output terminals U, V, and W but not change the value of P00.13.
- The starting frequency cannot be set too low. During onsite commissioning, ensure the starting frequency is set properly so that the brake can be turned on, and ensure the brake has been turned on before running.
- 4. The lifting ACC time can be 3s at most. If the ACC time is too long, the brake may not be opened.
- 5. The rated voltage must be at least 380V. If the grid rated voltage is too low (lower than 85% Ue), the brake cannot be opened; if the voltage is too low, the speed cannot be boosted.
- 6. When the conical motor performs constant-power variable-frequency speed regulation (boost), the max. rotational speed cannot exceed 1.2 times the rated speed (60Hz). Otherwise, the motor cannot run properly since the pressure spring cannot be pushed due to the axial magnetic pull force reduce, and therefore the VFD encounters the current limit or overcurrent fault.

5.2 Commissioning horizontal moving

5.2.1 Wiring

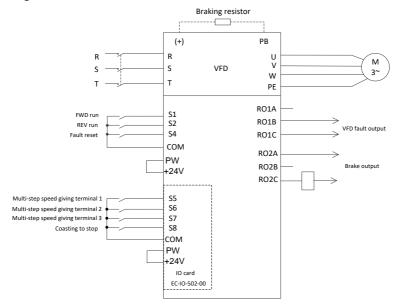


Figure 5-12 Wiring for horizontal moving

Note: If the wiring is performed according to Figure 5-12 Wiring for horizontal moving, most VFD parameters need no adjustment. If the onsite function terminals are inconsistent with the terminals shown in the figure, adjust the input and output terminal functions according to the actual wiring after selecting this application macro.

5.2.2 Commissioning procedure

- 1. Check the wiring and ensure the wiring is proper.
- Set P00.18=1 to restore to default settings.
- 3. Set motor nameplate parameters in P02.
- 4. Set P90.00=3 to select the horizontal moving application macro.
- 5. Perform low-speed trial run.

5.2.3 Horizontal moving application macro parameters (P90.00=3)

Function code	Name	Setting	Remarks
P00.01	Channel of running commands	1	Terminal

Function code	Name	Setting	Remarks
P00.03	Max. output frequency	100.00Hz	/
P00.04	Upper limit of running frequency	60.00Hz	/
P00.06	Setting channel of A frequency command	6	Multi-step speed running
P00.11	ACC time 1	5.0s	/
P00.12	DEC time 1	4.0s	/
P01.01	Starting frequency of direct start	2.00Hz	/
P01.15	Stop speed	1.00 Hz	/
P05.03	Function of S3	0	No function
P05.04	Function of S4	7	Fault reset
P06.03	RO1 output selection	5	VFD in fault
P06.04	RO2 output selection	1	Running
P10.04	Multi-step speed 1	8.0%	Corresponding to the max. frequency
P10.06	Multi-step speed 2	18.0%	Corresponding to the max. frequency
P10.08	Multi-step speed 3	32.0%	Corresponding to the max. frequency
P10.10	Multi-step speed 4	50.0%	Corresponding to the max. frequency
P11.05	Current limit selection	0x11	Enable software and hardware current limit.
P11.06	Automatic current limit threshold	160.0%	/
P11.26	Enabling special functions	0x001	<i>ţ</i>
P25.01	Function of S5	16	Multi-step speed 1
P25.02	Function of S6	17	Multi-step speed 2
P25.03	Function of S7	18	Multi-step speed 3
P25.04	Function of S8	6	Coast to stop
P25.10	Expansion card input terminal polarity	0x08	Terminal polarity

Note: The macro parameter table does not contain some parameters that are factory default parameters.

5.2.4 Points for attention

- If you only want to check whether the VFD runs properly, set P90.00=0 (Common application mode).
- If you perform empty-load commissioning, set P90.00 to 3 (Horizontal moving application macro),

and set P90.12 and P90.13 to 0 to prevent the torque verification fault reporting caused by empty load.

- During onsite commissioning, if the VFD terminal signal upward/downward running command is inconsistent with the hook lifting/lowering, swap any two phase wires of VFD output terminals U, V, and W.
- This macro can meet the requirements of most horizontal moving application cases, and the
 performance parameters have been optimized and do not need to be adjusted in most cases. If
 an exception occurs, see the function parameter chapter for adjustment or contact the technical
 support.

5.2.5 Commissioning anti-sway

This product has been embedded with the anti-sway algorithm. The anti-sway function can be enabled by setting P85.00 or input terminal function 90.

Anti-sway is divided into:

- Anti-sway mode with P85.01=0 and P85.01=2, in which the rope length needs to be obtained in real time. This can take good effect if the initial status is standstill.
- Anti-sway mode with P85.01=1, in which the rope length does not need to be obtained in real time. This can have a quick stop but there is still minor sway.

The anti-sway related rope height is usually measured by the lifting VFD, which is transmitted to the cross and long travel mechanism/luffing VFDs through analog AI or high-speed pulse HDI. The transmitted rope height can be viewed through P94.33.

Lifting VFD parameter settings:

Function code	Name	Description	Setting		
Rope lengt	Rope length output setting				
P06.14	AO1 output selection		35		
P06.16	HDO high-speed pulse output	35: Hook rope length	35		
P85.04	Max. rope length	5.00–150.00m	40.00m		
Height mea	suring				
P93.08	Enabling height measuring	0–1 0: Disable 1: Enable internal measuring (motor encoder) (In closed-loop mode, the encoder measures the speed and height.) 2: Enable external measuring (HDI) (In openand closed-loop modes, the pulley encoder measures the height.)	1		

Function code	Name	Description	Setting
		Note: When P93.08=2, P20.15=0 indicates	
		HDI measuring the height.	
P93.09	Mechanical transmission ratio	0.01–300.00	10.00
P93.10	Suspension ratio	1–4	1
P93.11	Rope length compensation	0.00–50.00m	0.00m
P93.12	Cable diameter	0.1–100.0m	10.0mm
P93.13	Per-layer turns of drum winding	1–200	30
P93.14	Initial turns of drum winding	0-P93.11 (Per-layer turns of drum winding)	0
P93.15	Initial diameter of drum	100.0-2000.0mm (Max. drum diameter in upward limit, including cable thickness)	600.0mm
P93.16	Enabling upward/downward limit position check	0x00–0x11 Ones place: 0: The upward limit position is not reached. 1: The upward limit position is reached. Tens place: 0: The downward limit position is not reached. 1: The downward limit position is reached. Note: Used for height measuring without upward or downward limit device.	0x00
P94.05	Measured height	0.00-655.35m (Hook lowering distance) (As the master in master/slave control, it sends this value.)	/
P94.06	High bits of height measuring pulse count value	0–65535	/
P94.07	Low bits of height measuring pulse count value	0–65535	/

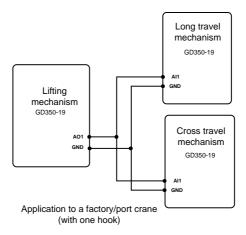
Cross travel, long travel, and luffing mechanism VFD parameter settings


Function code	Name	Description	Setting
P85.02	Rope length obtaining source	0–6	
		0: Keypad	0
		1: Al1	

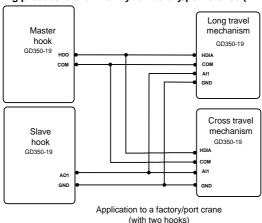
Function code	Name	Description	Setting
		2: AI2	
		3: HDIA	
		4: HDIB	
		5: Max(AI1, HDIA)	
		6: Max(AI2, HDIB)	
P85.03	Keypad set rope length	0.00–100.00m	0.00m
P85.04	Max. rope length	5.00–150.00m	40.00m
P85.05	Rope length compensation value	0.00–150.00m	0.00m
P94.32	Obtained rope length	0–600.00m (Rope length obtained through P85.02)	/
P94.33	Rope length with compensation	0–600.0m	/

Note: If external device can obtain the rope length in real time, it can be updated to **P85.03 through communication.**

5.2.5.1 Commissioning procedure of the anti-sway function for tower cranes


- Enable the anti-sway function by setting the cross travel mechanism VFD function code P85 00=1 or S terminal function 90
- 2. If AI is used to transmit the rope height: Set the cross travel mechanism VFD P85.02=1 or 2, and set the lifting VFD P06.14=35 (Hook rope height) and P85.03 (Keypad set rope height), so that the cross travel mechanism receives the rope height from the lifting mechanism in real time. The same rule is used if HDI is used to transmit the rope height. (If an external mechanism is used to measure the rope height, directly write keypad set rope height P85.03.)

Tower crane application


- Configure the lifting VFD to measure the height. For details, see section 5.1.6 Height measuring.
 After the height measuring, check whether P94.32 (height that the slave receives) and P94.05 (height that the master measures) are the same.
- 4. Perform low-speed trial run.

5.2.5.2 Commissioning procedure of anti-sway for factory/port cranes (with one hook)

- Set lifting and cross travel mechanism VFD parameters, which are the same as section 5.2.5.1 Commissioning procedure of the anti-sway function for tower cranes.
- Set long travel mechanism VFD parameters, which are the same as cross travel mechanism VFD parameters.

5.2.5.3 Commissioning procedure of anti-sway for factory/port cranes (with two hooks)

Set the VFD function code P85.04 of lifting mechanisms (including the main and auxiliary hooks)
to be equal to the max. rope height of the long and cross travel mechanisms. The lifting
mechanism main hook and auxiliary hook VFDs use HDO and AO1 output rope heights
respectively. As shown in the wiring, set the main hook VFD P06.16=35 (HDO outputs hook rope

- height), and the auxiliary VFD P06.14=35 (AO1 outputs hook rope height).
- The long and cross travel mechanism VFDs use Al1 and HDIA or Al2 and HDIB to receive the
 rope heights transmitted by the main and auxiliary hook VFDs, and the rope height source
 P85.02 is set to 5 or 6. The long travel mechanism VFD and cross travel mechanism VFD must
 be the same in P85.04.

5.2.5.4 Long/cross travel and luffing mechanism anti-swing parameters

When P85.01=0 (Common anti-sway mode), related parameters are listed in the following.

Function code	Name	Description	Setting
P85.06	Anti-sway switching frequency threshold	0.00–50.00Hz Anti-sway is not started when the difference between the set frequency and present frequency is less than P85.06.	10.00 Hz
P85.07	Damping factor	0.000–1.000 Increasing this value enhances the ability to suppress sway.	0.400
P85.08	Gear switchover filtering delay	0.000–10.000s	0.100s
P85.09	Anti-sway percentage	0–100	30

When P85.01=1 (Anti-sway mode without rope length), set P85.11 (Anti-sway approximate ACC/DEC time). Related parameters are listed in the following.

Function code	Name	Description	Setting
P85.06	Anti-sway switching frequency threshold	0.00–50.00Hz Anti-sway is not started when the difference between the set frequency and present frequency is less than P85.06.	10.00Hz
P85.07	Damping factor	0.000–1.000 Increasing this value enhances the ability to suppress sway.	0.400
P85.08	Gear switchover filtering delay	0.000–10.000s	0.100s
P85.09	Anti-sway percentage	0–100	30
P85.10	Residual sway percentage	0–100	11
P85.11	Anti-sway ACC/DEC time	0.00–10.00s	6.00s

When P85.01=2 (S curve anti-sway mode), related parameters are listed in the following.

Function code	Name	Description	Setting
P01.05	ACC/DEC mode	1: S curve	1
P01.06	Time of starting segment of DEC S curve	0.0–50.0s	0.5s
P01.07	Time of ending segment of ACC S curve	0.0–50.0s	1.0s
P01.27	Time of starting segment of DEC S curve	0.0–50.0s	0.5s
P01.28	Time of ending segment of DEC S curve	0.0–50.0s	1.0s
P85.00	Enabling anti-sway	1: Enable	1
P85.06	Anti-sway switching frequency threshold	0.00–50.00Hz Anti-sway is not started when the difference between the set frequency and present frequency is less than P85.06.	10.00Hz
P85.07	Damping factor	0.000–1.000 ing factor Increasing this value enhances the ability to suppress sway.	
P85.15	S curve gain coefficient	0.0–1.0 Reducing this value enhances the ability to suppress sway, but increase the ACC/DEC time.	0.6
P85.16	Anti-sway jogging time	0.000–5.000s Setting this value properly can help respond to rapid jogging.	0.000s

5.3 Commissioning tower crane slewing

5.3.1 Wiring

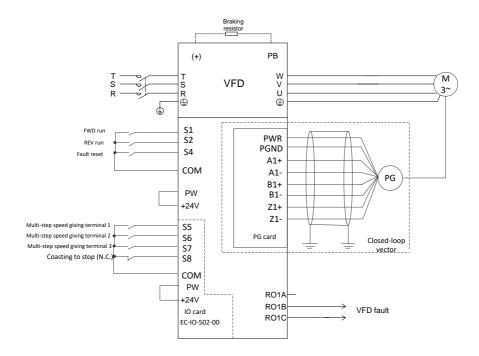


Figure 5-13 Wiring for tower crane slewing

Note: If the wiring is performed according to

Figure 5-13 Wiring for tower crane slewing, most VFD parameters need no adjustment. If the onsite function terminals are inconsistent with the terminals shown in the figure, adjust the input and output terminal functions according to the actual wiring after selecting this application macro.

5.3.2 Commissioning tower crane slewing without using an eddy current controller

5.3.2.1 Commissioning closed-loop vector controlled tower crane slewing using an eddy current controller

- Check the wiring and ensure the wiring is proper.
- 2. Set P00.18=1 to restore to default settings.
- 3. Set motor nameplate parameters in P02.
- 4. Set P00.15=2. When the keypad displays "-ΓUN-". Press the RUN key to perform static

autotuning.

- Set the encoder type parameter P20.00, set the pulse per resolution (PPR) parameter P20.01.
 Perform low-speed upward running. Check the value of P18.00. If the value is negative, the encoder direction is reversed. Then you only need to set P20.02=0x001.
- Set P90.00=15 to select the application macro for tower crane slewing without using an eddy current controller in space voltage vector control.
- 7. Perform low-speed trial run.

5.3.2.2 Macro parameters (P90.00=14) for tower crane slewing without using an eddy current controller in closed-loop vector control mode 1

Function		0.00		
code	Name	Setting	Remarks	
P00.00	Speed control mode	3	Closed-loop vector control	
P00.01	Channel of running commands	1	Terminal	
P00.06	Setting channel of A frequency command	6	Multi-step speed running	
P00.11	ACC time 1	12.0s	Low-frequency ACC time	
P00.12	DEC time 1	14.0s	Low-frequency DEC time	
P00.14	Carrier frequency	4.0kHz	/	
P01.01	Starting frequency	0.00Hz	/	
P01.05	ACC/DEC mode	2	Rotation application mode	
P01.15	Stop speed	0.60Hz	/	
P01.24	Stop speed delay	20.0s	/	
P03.00	Speed-loop proportional gain 1	5.0	/	
P03.01	Speed-loop integral time 1	0.200s	/	
P03.02	Low-point frequency for switching	15.00Hz	/	
P03.03	Speed-loop proportional gain 2	5.0	/	
P03.04	Speed-loop integral time 2	0.200s	/	
P03.05	High-point frequency for switching	20.00Hz	/	
P03.06	Speed-loop output filter	1	/	
P05.04	Function of S4	7	Fault reset	
P06.03	Function of RO1	5	Fault output	
P10.04	Multi-step speed 1	16.0%	Corresponding to the max. frequency, gear-1 speed	
P10.06	Multi-step speed 2	32.0%	Corresponding to the max.	

Function code	Name	Setting	Remarks	
			frequency, gear-2 speed	
P10.08	Multi-step speed 3	50.0%	Corresponding to the max.	
F 10.06	Multi-Step Speed 3	50.0%	frequency, gear-3 speed	
P10.10	Multi-step speed 4	70.0%	Corresponding to the max.	
1 10.10	Walti-Step Speed 4	70.070	frequency, gear-4 speed	
P10.12	Multi-step speed 5	90.0%	Corresponding to the max.	
1 10.12	Walti Step Speed o	30.070	frequency, gear-5 speed	
P11.00	Input/output phase loss	0x0100	/	
	protection		,	
P11.05	Current limit selection	0x11	Software current limit enabled	
P11.06	Automatic current limit threshold	200.0%	/	
P11.14	Speed deviation detection	50.0%	/	
F 111.14	value	30.078		
	Enabling special functions		Special functions including P11.03	
			(Overvoltage stall protection), P11.05	
		ns 0x001	(Current limit selection), P01.00	
			(Running mode of start), P00.13	
P11.26			(Running direction), P03.20	
			(Electromotive torque upper limit set	
			through keypad), and P03.21	
			(Braking torque upper limit set	
			through keypad).	
P20.03	Detection time of encoder	6.0s	/	
	offline fault			
P25.01	Function of S5	16	Multi-step speed 1	
P25.02	Function of S6	17	Multi-step speed 2	
P25.03	Function of S7	18	Multi-step speed 3	
P25.04	Function of S8	6	Coast to stop	
P25.10	Terminal polarity	0x08	/	
P86.01	Curve coefficient	80	/	
P86.02	Stop torque hold time	14.0s	/	
P86.12	Enabling direction change switchover	1	Enable	
	Lagging value of direction		/	
P86.14	change switchover basis	115%		
	time			
P86.15	Direction change frequency	0.00Hz	/	
			<u> </u>	

Function code	Name	Setting	Remarks
	maintenance point		
	Hold time 1 of direction		/
P86.16	change switchover	1.500s	
	frequency		
D00 00	Enabling tower crane	4	Enable tower crane deformation
P86.39	deformation compensation	1	compensation

Note: The macro parameter table does not contain some parameters that are factory default parameters.

5.3.2.3 Macro parameters (P90.00=15) for tower crane slewing without using an eddy current controller in space voltage vector control

In closed-loop vector control, if an encoder exception occurs, according to the parameter table, you can modify the following parameters or set P90.00=15 to switch to tower crane slewing without using an eddy current controller in space voltage vector control.

Function code	Name	Setting	Remarks
P00.00	Speed control mode	2	Space voltage vector control
P00.11	ACC time 1	15.0s	Low-frequency ACC time
P00.12	DEC time 1	15.0s	Low-frequency DEC time
P08.30	Frequency decrease ratio in droop control	10.00Hz	/
P11.26	Enabling special functions	0x001	/
P86.02	Stop torque hold time	14.0s	/
P86.12	Enabling direction change switchover	1	Enable
P86.14	Lagging value of direction change switchover basis time	130%	/
P86.15	Direction change frequency maintenance point	3.00Hz	/

Note: The macro parameter table does not contain some parameters that are factory default parameters.

5.3.2.4 Points for attention

 If you only want to check whether the VFD runs properly, set P90.00=0 (Common application mode).

- If you perform empty-load commissioning, set P90.00= 14 (Closed-loop vector control) or 15 (Space voltage vector control) to select the application macro for tower crane slewing without using an eddy current controller.
- During onsite commissioning, if the VFD terminal signal forward/reverse running command is inconsistent with the load running direction, adjust any two phase sequences of VFD output terminals U, V, and W.
- The function macro of tower crane slewing without using an eddy current controller (both in closed-loop vector control and space voltage vector control) can meet the requirements of most application cases for tower crane slewing, and the performance parameters have been optimized and do not need to be adjusted in most cases. If an exception occurs, see the function parameter chapter for adjustment or contact the technical support.

5.3.3 Commissioning tower crane slewing that uses an eddy current controller

5.3.3.1 Commissioning procedure

- 1. Check the wiring and ensure the wiring is proper.
- 2. Set P00.18=1 to restore to default settings.
- 3. Set motor nameplate parameters in P02.
- 4. Set P90.00=4 to select the application macro for tower crane slewing.
- 5. Perform low-speed trial run.

5.3.3.2 Tower crane slewing macro parameters (P90.00=4)

Function code	Name	Setting	Remarks
P00.01	Channel of running commands	1	Terminal
P00.06	Setting channel of A frequency command	6	Multi-step speed running
P00.11	ACC time 1	10.0s	Low-frequency ACC time
P00.12	DEC time 1	18.0s	Low-frequency DEC time
P01.01	Starting frequency of direct start	1.50Hz	1
P01.15	Stop speed	1.00Hz	/
P05.03	Function of S3	0	No function
P05.04	Function of S4	7	Fault reset
P06.03	RO1 output selection	5	VFD in fault
P08.00	ACC time 2	15.0s	High-frequency ACC time
P08.01	DEC time 2	13.0s	High-frequency DEC time
P08.19	Switching frequency of	16.00Hz	If the running frequency is greater than

Function code	Name	Setting	Remarks
	ACC/DEC time		P08.19, switch to ACC/DEC time 2.
P10.04	Multi-step speed 1	16.0%	Corresponding to the max. frequency
P10.06	Multi-step speed 2	32.0%	Corresponding to the max. frequency
P10.08	Multi-step speed 3	50.0%	Corresponding to the max. frequency
P10.10	Multi-step speed 4	70.0%	Corresponding to the max. frequency
P10.12	Multi-step speed 5	90.0%	Corresponding to the max. frequency
P25.01	Function of S5	16	Multi-step speed terminal 1
P25.02	Function of S6	17	Multi-step speed terminal 2
P25.03	Function of S7	18	Multi-step speed terminal 3
P25.04	Function of S8	6	Coast to stop
P25.10	Input terminal polarity	0x08	NC when S8 uses coasting to stop.

Note: The macro parameter table does not contain some parameters that are factory default parameters.

5.3.3.3 Points for attention

- If you only want to check whether the VFD runs properly, set P90.00=0 (Common application mode).
- If you perform empty-load commissioning, set P90.00=4 (Application macro for tower crane slewing).
- During onsite commissioning, if the VFD terminal signal forward/reverse running command is inconsistent with the load running direction, adjust any two phase sequences of VFD output terminals U, V, and W.
- This macro can meet the requirements of most application cases for tower crane slewing, and the
 performance parameters have been optimized and do not need to be adjusted in most cases. If
 an exception occurs, see the function parameter chapter for adjustment or contact the technical
 support.

5.3.3.4 Controlling the eddy current control module through the HDO terminal

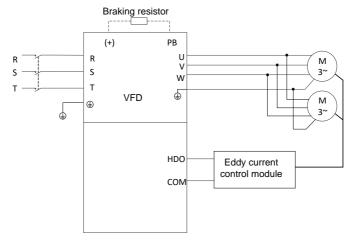


Figure 5-14 Connecting the HDO terminal to the eddy current control module

Commissioning procedure:

- Connect the HDO terminal to the eddy current control module according to Figure 5-14
 Connecting the HDO terminal to the eddy current control module.
- Set P91.37=1 to enable eddy current control for tower crane slewing, and set P91.48 to adjust HDO carrier frequency.
- Set P91.38-P91.47 to adjust the eddy current control module output voltage change with frequency.

Note: The duty ratio that is output when bit1 of P06.05 is 1 decreases when the frequency increases. The eddy current control module output voltage decreases when the frequency increases.

Function code	Name	Setting Value
P06.05	Output terminal polarity selection	The function code is used to set the polarity of output terminals. When a bit is 0, the output terminal is positive. When a bit is 1, the output terminal is negative. BIT3 BIT2 BIT1 BIT0 RO2 RO1 HDO Y Setting range: 0x0-0xF

Function code	Name	Setting	Value
P91.37	Enabling HDO based eddy current control for tower crane slewing	HDO is used as PWM signal for voltage adjustment output.	1
P91.38	Frequency f0	P91.38 setting range: P91.40-P00.03	50.00Hz
P91.39	Duty ratio corresponding to frequency f0	(Max. output frequency) Setting range of P91.40:	100.0%
P91.40	Frequency f1	P91.42–P91.38	40.00Hz
P91.41	Duty ratio corresponding to frequency f1	Setting range of P91.42: P91.44–P91.40	95.0%
P91.42	Frequency f2	Setting range of P91.44:	10.00Hz
P91.43	Duty ratio corresponding to frequency f2	P91.46-P91.42 Setting range of P91.46:	90.0%
P91.44	Frequency f3	0.00Hz-P91.44	3.50Hz
P91.45	Duty ratio corresponding to frequency f3	P91.39, P91.41, P91.43, P91.47 setting range: 0.0%–100.0%	84.5%
P91.46	Frequency f4	Segmented adjustment is performed	0.00Hz
P91.47	Duty ratio corresponding to frequency f4	based on the cycle ratio and frequency. Duty ratio Duty ratio Duty ratio Duty ratio Frequency. Frequency. P91.46 P91.47 P91.42 P91.40 P91.38	0.0%
P91.48	HDO carrier frequency	0.5–10.0kHz	1.0kHz
P91.49	HDO closing delay during stop	0–100.0s	5.0s

5.3.3.5 Controlling the eddy current control module through the AO terminal

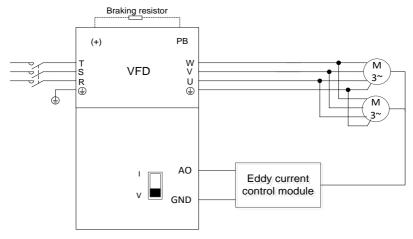
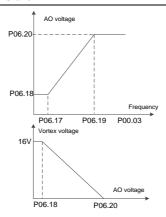


Figure 5-15 Connecting the AO terminal to the eddy current control module


Note: Turn SW2 on the control board to "V" for voltage output.

Controlling the eddy current control module through the AO terminal

- Connect the AO terminal to the eddy current control module according to Figure 5-15 Connecting the AO terminal to the eddy current control module.
- 2. Set P06.14=0 to select running frequency output for AO1.
- 3. Set P06.17–P06.21 to adjust the eddy current control module output voltage percentage.
- 4. The output voltage percentage is the ratio of running frequency to P00.03.

Function code settings:

Function code	Name	Description	Default
P06.14	AO1 output selection	0: Running frequency	0
P06.17	AO1 output lower limit	-300.0%–P06.19	16.0%
P06.18	AO1 output corresponding to lower limit	0.00V-10.00V	2.00V
P06.19	AO1 output upper limit	P06.17–300.0%	60.0%
P06.20	AO1 output corresponding to upper limit	0.00V-10.00V	10.00V
P06.21	AO1 output filter time	0.000s-10.000s	0.000s

The relationship between the motor running frequency, AO voltage, and eddy current voltage is as follows:

Running frequency	< 8Hz	8Hz	18Hz	30Hz	> 30Hz
AO voltage	2V	2V	5.64V	10V	10V
Eddy current voltage	16V	16V	8.72V	0V	0V

5.4 Commissioning the electric potentiometer

5.4.1 Wiring

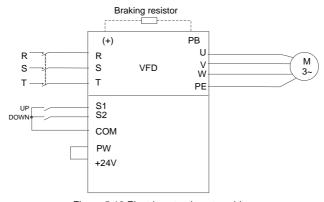


Figure 5-16 Electric potentiometer wiring

5.4.2 Commissioning procedure

- Check the wiring and ensure the wiring is proper.
- Set P00.18=1 to restore to default settings.

- 3. Set motor parameters in P02.
- 4. Set P05.01=10 and P05.02=11 to specify the UP/DOWN terminals.
- 5. Set P08.44 to set terminal control validity, and set P08.45 and P08.46 to set the increase/decrease change rate of the UP/DOWN terminal frequency.
- 6. Press UP/DOWN to run.

The following figure shows the electric potentiometer value curve.

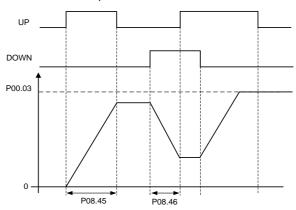


Figure 5-17 Electric potentiometer commissioning

5.4.3 Electric potentiometer commissioning parameters

Table 5-7 Electric potentiometer commissioning parameters

Function code	Name	Setting	Remarks		
P00.03	Max. output frequency	50	Used to set the max. output frequency of the VFD.		
P05.01	Function of S1	10	Increase frequency setting (UP)		
P05.02	Function of S2	11	Decrease frequency setting (DOWN)		
P08.44	UP/DOWN terminal control setting	0x000	0x000–0x221 Ones place: Frequency setting selection 0: The setting made through UP/DOWN is valid. 1: The setting made through UP/DOWN is invalid. Ones place: Frequency control selection 0: Valid only when P00.06 = 0 or		

Function code	Name	Setting	Remarks
			P00.07 = 0
			1: Valid for all frequency setting
			methods
			2: Invalid for multi-step speed running
			when multi-step speed running has the
			priority
			Hundreds place: Action selection for
			stop
			0: Setting is valid.
			1: Valid during running, cleared after
			stop
			2: Valid during running, cleared after a
			stop command is received
	Frequency increment		
P08.45	integral rate of the UP	0.50Hz/s	0.01-50.00Hz/s
	terminal		
P08.46	Frequency integral rate of	0.50Hz/s	0.01-50.00Hz/s
PU0.40	the DOWN terminal	0.5002/8	U.U I—3U.UUПZ/S

5.5 Master/slave control

5.5.1 Function description

Master/slave control is classified into power balance and speed synchronization.

1. Master/slave power balance

Master/slave power balance is a control method that distributes the load between two or more motors to achieve even balance. When a transmission device is driven by two or more motors, and two or more motor shafts are coupled with each other through gears, chains or conveyor belts, it is necessary to distribute the load between the motors through the master/slave control method to meet the control accuracy requirements.

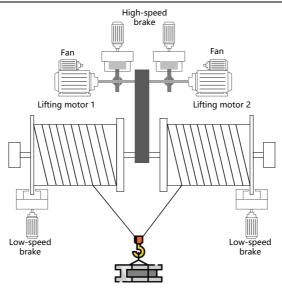


Figure 5-18 Mechanical structure 1

In general, if multiple VFDs control multiple motors through belt connection, it is considered as flexible connection (or soft connection). When flexible connection is applied, generally, the slave adopts the speed control mode, and then the droop function is used to achieve better power balance performance. Therefore, in the terminal master/slave mode, master/slave mode a is recommended; in the CAN communication master/slave mode, master/slave mode 0 is recommended.

In general, if multiple VFDs control multiple motors through shaft, gear, or chain connection, it is considered as rigid connection (or hard connection). When rigid connection is applied, generally, the slave adopts the torque control mode for better power balance performance. Therefore, in the terminal master/slave mode, master/slave mode b is recommended; in the CAN communication master/slave mode, master/slave mode 1 is recommended.

2. Master/slave speed synchronization

Master/slave speed synchronization is used for the speed synchronization between two motors. Using the function requires that both motors have the encoder installed, and the VFD has the encoder pulse counting function. The mechanical structure is shown in Figure 5-19.

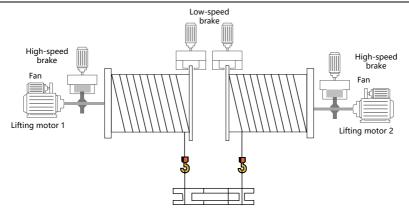


Figure 5-19 Mechanical structure 2

Since master/slave speed synchronization requires speed consistency, the VFD must use the closed-loop mode. Therefore, only master/slave mode 4 in the CAN communication master/slave mode can be used.

5.5.2 Terminal master/slave function

A. Using the VFD high-speed pulse input terminal HDIA and high-speed pulse output terminal HDO to implement simplified master/slave control

1. Terminal master/slave mode a

The master adopts the speed control mode and sends the ramp frequency to the slave HDIA terminal through the HDO terminal. The slave adopts the speed control mode and the frequency reference is set by the HDIA terminal. Then, adjust reduction ratio of droop control P08.30 of the salve to meet power balance.

Master parameters:

Function code	Name	Description	Setting	
P06.00	HDO output type	0: Open collector high-speed pulse output	0	
		1: Open collector output		

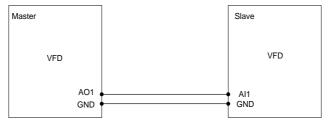
Function code	Name	Description	Setting
P06.16	HDO high-speed pulse output	2: Ramp reference frequency	2
P06.27	HDO output lower limit	-300.0%–P06.29	0.00%
P06.28	HDO output corresponding to lower limit	0.00–50.00kHz	0.00kHz
P06.29	HDO output upper limit	P06.27–300.0%	100.0%
P06.30	HDO output corresponding to upper limit	0.00–50.00kHz	50.00kHz

Slave parameters:

Function code	Name	Description	Setting
D00.00	Setting channel of A	0–15	4
P00.06	frequency command	4: High-speed pulse HDIA	4
		Ones place: HDIA input type	
P05.00	HDI input type	0: HDIA is high-speed pulse input	0x00
P05.00	nDi input type	Tens place: HDIB input type	UXUU
		0: HDIB is high-speed pulse input	
		0: Input set through frequency	
P05.38	HDIA high-speed pulse	1: Reserved	0
P05.36	input function selection	2: Input set through encoder, used together with	U
		HDIB	
P05.39	HDIA frequency lower	0.000kHz=P05.41	0.000kHz
P05.40	Corresponding setting of HDIA frequency lower limit	-300.0%–300.0%	0.0%
P05.41	HDIA frequency upper limit	P05.39–50.000kHz	50.000kHz
	Corresponding setting		
P05.42	of HDIA upper limit	-300.0%–300.0%	100.0%
	frequency		
P08.30	Frequency decrease	0.00–50.00Hz	1.00Hz
P08.30	ratio in droop control	0.00=30.00F 2 	1.0002

2. Terminal master/slave mode b

The master adopts the speed control mode and sends the torque current to the slave HDIA terminal through the HDO terminal. The slave adopts the torque control mode and the torque reference is set by the HDIA terminal.


Master parameters:

Function code	Name	Description	Setting
P06.00	HDO output type	0: Open collector high-speed pulse output	0
P06.16	HDO high-speed pulse	22: Torque current (relative to triple the motor	22
P06.16	output	rated current)	22

Slave parameters:

Function code	Name	Description	Setting
P03.11	Torque setting method	5: Pulse frequency HDIA	5
P03.32	Enabling torque control	1: Enable	1
P05.00	HDI input type	Ones place: HDIA input type 0: HDIA is high-speed pulse input Tens place: HDIB input type 0: HDIB is high-speed pulse input	0x00

B. Using the VFD analog input terminal (for example, Al1) and analog output terminal (for example, AO1) to implement simplified master/slave control

3. Analog terminal master/slave mode a

The master adopts the speed control mode and sends the ramp frequency to the slave Al1 terminal through the AO1 terminal. The slave adopts the speed control mode and the frequency reference is set by the Al1 terminal. Then, adjust reduction ratio of droop control P08.30 of the salve to meet power balance.

Master parameters:

Function code	Name	Description	Setting
P06.14	AO1 output selection	2: Ramp reference frequency	2
P06.17	AO1 output lower limit		0.0%
	AO1 output		
P06.18	corresponding to lower	P06.17 setting range: -300.0%-P06.19	0.00V
	limit	P06.18 setting range: 0.00V–10.00V	
P06.19	AO1 output upper limit	Setting range of P06.19: P06.17–100.0%	100.0%
	AO1 output	P06.20 setting range: 0.00V-10.00V	
P06.20	corresponding to upper	P06.21 setting range: 0.000s-10.000s	10.00V
	limit		
P06.21	AO1 output filter time		0.000s

Slave parameters:

Function code	Name	Description	Setting
P00.06	Setting channel of A frequency command	1: Al1	1
P05.24	Al1 lower limit		0.00V
P05.25	Corresponding setting of Al1 lower limit	P05.24 setting range: 0.00V–P05.26 P05.25 setting range: -300.0%–300.0%	0.0%
P05.26	Al1 upper limit	P05.26 setting range: P05.24–10.00V	10.00V
P05.27	Corresponding setting of AI1 upper limit	P05.27 setting range: -300.0%–300.0% P05.28 setting range: 0.000s–10.000s	100.0%
P05.28	Al1 input filter time		0.030s
P08.30	Frequency decrease ratio in droop control	0.00–50.00Hz	1.00Hz

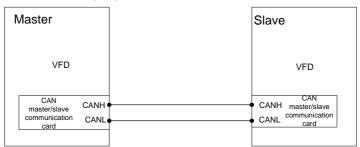
4. Analog terminal master/slave mode b

The master adopts the speed control mode and sends the torque current to the slave Al1 terminal through the AO1 terminal. The slave adopts the torque control mode and the torque reference is set by the Al1 terminal.

Master parameters:

Function code	Name	Description	Setting
P06.14	AO1 output selection	22: Torque current (relative to triple the motor rated current)	22
P06.17	AO1 output lower limit	P06.17 setting range: -300.0%-P06.19	0.0%
P06.18	AO1 output	P06.18 setting range: 0.00V-10.00V	0.00V

Function code	Name	Description	Setting
	corresponding to lower	P06.19 setting range: P06.17–300.0%	
	limit	P06.20 setting range: 0.00V-10.00V	
P06.19	AO1 output upper limit	P06.21 setting range: 0.000s-10.000s	100.0%
	AO1 output		
P06.20	corresponding to upper		10.00V
	limit		
P06.21	AO1 output filter time		0.000s


Slave parameters:

Function code	Name	Description	Setting
P03.11	Torque setting method	2: Al1	2
P03.32	Enabling torque control	1: Enable	1
P05.24	Al1 lower limit		0.00V
P05.25	Corresponding setting of Al1 lower limit	P05.24 setting range: 0.00V–P05.26 P05.25 setting range: -300.0%–300.0%	0.0%
P05.26	Al1 upper limit	P05.26 setting range: P05.24–10.00V	10.00V
P05.27	Corresponding setting of AI1 upper limit	P05.27 setting range: -300.0%–300.0% P05.28 setting range: 0.000s–10.000s	100.0%
P05.28	Al1 input filter time		0.030s

Note: When the terminal master/slave function is used, commissioning is unrelated to P28.

5.5.3 Master/slave communication

The VFDs can implement the master/slave control function by using the CAN master/slave communication card. The wiring diagram is as follows.

The specific CAN communication master/slave modes are: master/slave mode 0–2 are master/slave power balance modes, master/slave mode 4 is the closed-loop speed synchronization mode, and master/slave mode 3 is reserved. Master/slave mode 0 and master/slave mode 1 are used often.

1. Master/slave mode 0 (P28.02 ones place=0)

Basic principle: Both the master and slave adopt the speed control mode, and the power balance is achieved by the droop control.

Commissioning method: Set P28.00 to 1 for the master, set P28.00 to 2 for the slave, set the ones place of P28.02 to 0 both for the master and slave to select master/slave mode 0, and adjust P28.03 for the slave based on the actual situation.

The master sends the running command and speed to the slave through CAN communication. The slave starts according to the command given by the master and runs according to the speed given by the master. At this time, adjust the droop frequency of the slave P08.30 to meet the power balance requirement.

2. Master/slave mode 1 (P28.02 ones place=1)

Basic principle: The master and slave must use the vector control mode of the same type, the master uses speed control, and the slave will be forced to use the torque control mode and use the master output torque as the reference torque.

Commissioning method: Set P28.00 to 1 for the master, set P28.00 to 2 for the slave, set the ones place of P28.02 to 1 both for the master and slave to select master/slave mode 1, and adjust P28.04 to set the torque gain for the slave and adjust P28.21 to increase or reduce the slave torque based on the actual situation. The slave will be switched to torque mode automatically, and therefore P03 parameters do not need to be adjusted.

The master sends the running command and speed to the slave through CAN communication. The slave starts according to the command given by the master and runs according to the torque given by the master.

3. Master/slave mode 2 (Combined mode, P28.02 ones place=2)

Basic principle: The slave starts in the speed control mode (master/slave mode 0) and then switches to the torque mode (master/slave mode 1) at a certain frequency point.

Commissioning method: Set P28.00 to 1 for the master, set P28.00 to 2 for the slave, set the ones place of P28.02 to 2 both for the master and slave to select master/slave mode 2, and adjust P28.03 and P28.04 for the slave based on the actual situation. In addition, set P28.05.

The master sends the running command, speed and torque to the slave through CAN communication. The slave starts according to the command given by the master and runs according to the speed given by the master if the switching frequency point is not reached but runs according to the torque given by the master if the switching frequency point is reached.

4. Master/slave mode 3 (Reserved)

5. Master/slave mode 4 (P28.02 ones place=4)

Basic principle: The master and slave must use the closed-loop vector control mode, the master uses speed control, and the slave will be forced to use the torque control mode and use the master output

torque as the reference torque.

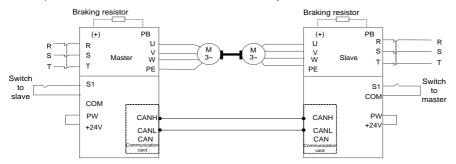
Commissioning method: Set P28.00 to 1 for the master, set P28.00 to 2 for the slave, set the ones place of P28.02 to 5 both for the master and slave, select master/slave mode 1, and adjust P28.04 to adjust the slave speed.

The master sends the running command, speed, and torque to the slave through CAN communication. The slave starts according to the command given by the master and runs according to the torque given by the master.

Note: Open-loop vector control is applicable only to master/slave modes 0-3, while closed-loop vector control is applicable to all the master/slave modes.

Function code	Name	Description	Default
P28.00	Master/slave mode	O: Master/slave control is invalid. 1: The local device is the master. 2: The local device is the slave.	0
P28.01	Master/slave mode selection	0: CAN 1: Reserved	0
P28.02	Master/slave control mode	Ones place: Master/slave running mode selection O: Master/slave mode 0. (Both the master and slave use speed control, and power balancing is performed by droop control.) 1: Master/slave mode 1. (The master and slave must be in the same type of vector control. When the master is in speed control, the slave is forced into torque control.) 2: Combined mode (Master/slave mode 2). The slave switches from speed mode (master/slave mode 0) to torque mode (master/slave mode 1) at a frequency point. 3: Master/slave mode 3 (Reserved)(Both the master and slave adopt speed control, and the slave performs power balance depending on the speed loop integral result of the master.) 4: Master/slave mode 4 (Both the master and slave adopt closed-loop speed control, and the slave performs power balance depending on the speed loop output of the master.) Tens place: Slave start command source 0: Master	0x001

Function code	Name	Description	Default
		1: Determined by P00.01 Hundreds place: Whether to enable master/slave to send/receive data 0: Enable 1: Disable	
P28.03	Slave speed gain	It is a percentage of the master ramp frequency. When the master and slave are different in the DEC ratio: 0.0–500.0% When the master and slave are the same in the DEC ratio: 100.0%	100.0%
P28.04	Slave torque gain	It is a percentage of the set frequency of the master. When the master and slave are different in the motor power: 0.0–500.0% When the master and slave are the same in the motor power: 100.0%	100.0%
P28.05	Frequency point for switching between speed mode and torque mode in master/slave mode 2	0.00–10.00Hz	5.00Hz
P28.06	Slave count	0–15	1
P28.07	Enabling the slave speed deviation window	0–1 0: Disable 1: Enable When the slave adopts the torque control mode, the speed deviation monitoring function can be enabled.	0
P28.08	Slave positive speed deviation window upper limit	0.00–50.00Hz When the actual speed is higher than the reference speed, if the actual speed is higher than (Reference speed + P28.08) and exceeds this upper limit, the speed has to be adjusted.	5.00Hz
P28.09	Slave negative speed deviation window lower limit	0.00–50.00Hz When the actual speed is lower than the reference speed, if the actual speed is lower than (Reference speed - P28.09) and the	5.00Hz


Function code	Name	Description	Default
		window lower limit, the speed has to be adjusted.	
P28.10	Slave rotation speed regulation coefficient Kb	0–50000 Applicable only in master/slave mode 4, for slave rotation speed regulation	100
P28.13	CAN slave torque offset	-100.0–100.0(%)	0.0
P28.14	Master/slave holding brake synchronization control	0x00–0x11 Ones place: Brake release synchronization 0: Invalid 1: Valid Tens place: Brake closing synchronization 0: Invalid 1: Valid Note: In a master/slave mode, when the function specified by P28.14 is enabled, the master and slave must be the same in brake release frequency and brake closing frequency.	0x11
P28.15	Master/slave brake release synchronization timeout time	0.00–30.00s	1.00s
P28.17	Droop caused running direction change	0x00–0x11 Ones place: During forward running, superposing the droop frequency can run to the reverse direction. 0: Disable 1: Enable Tens place: During reverse running, superposing the droop frequency can run to the forward direction. 0: Disable 1: Enable	0x00
P28.18	Slave torque direction in torque mode	0–1 0: Common mode 1: Forced to follow the master torque direction	0

5.5.4 Master/slave switchover

1. Normal master/slave switchover work conditions

Application description: Both the master VFD and slave VFD drive a motor, but in certain cases, the master and slave must be switched over.

Commissioning description: Set an S (for example, S1) terminal of the master to 72, and an S (for example, S1) terminal of the slave to 71. Enable the S1 terminal of the master to make the master working as the slave. Enable the S1 terminal of the slave to make the slave working as the master. If different parameters need to be set for the master and slave, you can set P90.03.

Note: Refer to 5.5 Master/slave control to set master and slave parameters.

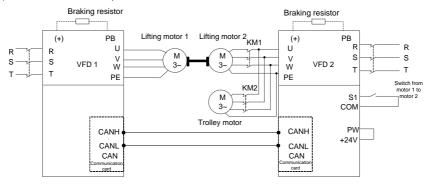
The following mainly describes the master/slave switchover.

Master parameters:

Function code	Name	Description	Setting
P05.01	Function of S1	72: Switch to the slave	72
P90.03	Method for terminals to switch application macros	3: Switch from the master to the slave	3

Slave parameters:

Function code	Name	Description	Setting
P05.01	Function of S1	71: Switch to the master	71
P90.03	Method for terminals to switch application macros	4: Switch from the salve to the master	4


2. Motor and master/slave switchover work conditions

In the lifting job of port crane, VFD 1 as the master drives lifting motor 1, while VFD 2 as the slave

drives lifting motor 2. After completing the lifting job, VFD 2 needs to drive the cross travel mechanism motor independently.

To do this, VFD 2 needs to:

- (1) Disable the master/slave mode and run independently.
- (2) Switch the motor from lifting motor 2 to the cross travel mechanism motor.
- (3) Switch motor and VFD parameters.

Note: The power supply switchover of lifting motor 2 and the cross travel mechanism motor must be controlled by the PLC.

Commissioning procedure:

- Set P90.00=6 (User-defined macro 1) for VFD 2, set running parameters for lifting motor 2
 according to the following table of user-defined application macro parameter settings, and note
 that A81.24=2 (Slave mode).
- Set P90.01=7 (User-defined macro 2) for VFD 2, set the parameters for cross travel mechanism
 motor according to the following table of user-defined application macro parameter settings, and
 note that A81.24=0 (Disable master/slave mode).
- When the S1 terminal of VFD 2 is invalid, VFD 2 drives lifting motor 2 and VFD 1 drives lifting motor 1 to complete the lifting work. When the S2 terminal of VFD 2 is valid, VFD 2 independently drives the cross travel mechanism motor to work.

Motor run status	VFD 1	VFD 2	KM1	KM2	VFD 2 Terminal S1	Lifting motor 1	Lifting motor 2	Cross travel mechanis m motor
Lifting run	For a master, P28.00=1	For a slave, A81.24=2 (P28.00=2)	Clos ed	Open ed	Invalid	Run	Run	Stop
Cross travel	When no master/slave	When no master/slave is	Open ed	Clos ed	Valid	Stop	Stop	During running,

Motor run status	VFD 1	VFD 2	KM1	KM2	VFD 2 Terminal S1	Lifting motor 1	Lifting motor 2	Cross travel mechanis m motor
mechanis	is valid,	valid, A82.24=0						switch
m run	P28.00=0	(P28.00=0), you						through
	you can	can switch						S1.
	modify	through S1.						
	through the							
	PLC.							

Note: For VFD 1, the master/slave control function code P28.00 needs to be modified through the PLC. At the work conditions of cross travel mechanism run, if it is difficult to change VFD 1 from master/slave control mode to non master/slave control mode (P28.00=0) through the PLC, you can set the hundreds place of P28.02 to 1 or use S terminal function 91 for VFD 1 to exit the master/slave mode.

Parameters of VFD 2

Function code	Name	Description	Setting
P05.01	Function of S1	35: Switch from motor 1 to motor 2	35
P90.00	Hoisting application macro setting	6: User-defined application macro 1	6
P90.01	Terminal-switched application macro setting	7: User-defined application macro 2	7
P90.03	Method for terminals to switch application macros	1: Switch from motor 1 to motor 2	1
A81.24	Master/slave mode	2: The local device is the slave.	2

5.5.5 User-defined application macros

You can enter user-defined application macro settings through P90.02.

Function code	Name	Description	Default
P90.02	User-defined application macro setting	0–3 0: None 1: Enter the settings of user-defined application macro 1 2: Enter the settings of user-defined application macro 2 3: Enter the settings of user-defined application macro 3	0

When P90.02=1, you will automatically enter A81.00-A81.46 to set related function codes.

When P90.02=2, you will automatically enter A82.00-A82.46 to set related function codes.

When P90.02=3, you will automatically enter A83.00-A83.46 to set related function codes.

Currently, there are 50 common function codes available for you to define macros. The three user-defined macro tables are the same. The following lists A81.00–A81.46.

User-defined function	Related function code	Name	Description	Setting range	Default
A81.00	P00.00	Speed control mode	0: SVC 0 1: SVC 1 2: V/F control 3: Closed-loop vector control mode	0–3	2
A81.01	P00.01	Channel of running commands	0: Keypad 1: Terminal 2: Communication	0–2	0
A81.02	P00.06	Setting channel of A frequency command	0: Keypad digital 1–14: See the function parameter chapter. 15: Multi-step speed run	0–15	0
A81.03	P00.11	ACC time 1	0.0-3600.0s	0.0-3600.0	10.0s
A81.04	P00.12	DEC time 1	0.0–3600.0s	0.0-3600.0	10.0s
A81.05	P01.05	ACC/DEC mode	0: Linear 1: S curve	0–1	0
A81.06	P01.08	Stop mode	Decelerate to stop Coast to stop	0–1	0
A81.07	P03.32	Enabling torque control	0: Disable 1: Enable	0–1	0
A81.08	P04.40	Enabling I/F mode for AM 1	0–1	0–1	0
A81.09	P04.41	Forward current setting in I/F mode for AM 1	0.0–200.0%	0.0–200.0	120.0%
A81.10	P04.52	Reverse current setting in I/F mode for AM 1	0.0–200.0%	0.0–200.0	120.0%
A81.11	P05.03	Function of S3	0: No function	0–95	0
A81.12	P05.04	Function of S4	1: Run forward	0–95	0

User-defined function	Related function code	Name	Description	Setting range	Default
			2: Run reversely 3–95: See the function parameter chapter.		
A81.13	P06.01	Y1 output selection	0: Invalid 1: Running	0–71	0
A81.14	P06.03	RO1 output selection	2: Running forward 3: Running reversely	0–71	0
A81.15	P06.04	RO2 output selection	4–71: See the function parameter chapter.	0–71	0
A81.16	P10.02	Multi-step speed 0	0.0–100.0%	0.0-100.0	0.0%
A81.17	P10.04	Multi-step speed 1	0.0-100.0%	0.0-100.0	0.0%
A81.18	P10.06	Multi-step speed 2	0.0-100.0%	0.0-100.0	0.0%
A81.19	P10.08	Multi-step speed 3	0.0–100.0%	0.0-100.0	0.0%
A81.20	P10.10	Multi-step speed 4	0.0-100.0%	0.0-100.0	0.0%
A81.21	P25.01	Function of S5		0–95	0
A81.22	P25.02	Function of S6	Function of S6		0
A81.23	P25.03	Function of S7	for P05	0–95	0
A81.24	P28.00	Master/slave mode	O: The master/slave mode is invalid. 1: The local device is the master. 2: The local device is the slave.	0–2	0
A81.25	P90.04	Enabling brake-oriented logic	0-1 0: The brake is controlled by an external controller. 1: The brake is controlled by the VFD.	0–1	0
A81.26	P90.05	Enabling forward torque for reverse-running start/stop	0x00–0x11 Ones place: indicates whether to enable forward torque for reverse-running start 0: Disable (The reverse-running start direction complies with the command.)	0x00–0x11	0x00

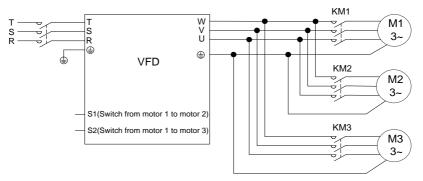
User-defined function	Related function code	Name	Description	Setting range	Default
	Code		1: Enable (The reverse-running start direction is always the forward-running direction.) Tens place: indicates whether to enable forward torque for reverse-running stop 0: Disable (The reverse-running stop direction is consistent with the command.) 1: Enable (The reverse-running stop direction is always the forward-running direction.)		
A81.27	P90.06	Graded multi-step speed reference 0	0.0–100.0%	0.0–100.0	0.0%
A81.28	P90.07	Graded multi-step speed reference 1	0.0–100.0%	0.0–100.0	0.0%
A81.29	P90.08	Graded multi-step speed reference 2	0.0–100.0%	0.0–100.0	0.0%
A81.30	P90.09	Graded multi-step speed reference 3	0.0–100.0%	0.0–100.0	0.0%
A81.31	P90.10	Graded multi-step speed reference 4	0.0–100.0%	0.0–100.0	0.0%
A81.32	P90.12	Forward brake release current	0.0–200.0% (of the motor rated current)	0.0–200.0	0.0%
A81.33	P90.13	Reverse brake release current	0.0–200.0% (of the motor rated current)	0.0–200.0	0.0%
A81.34	P90.14	Forward brake release torque	0.0–200.0% (of the motor rated torque)	0.0–200.0	0.0%
A81.35	P90.15	Reverse brake release torque	0.0–200.0% (of the motor rated torque)	0.0–200.0	0.0%
A81.36	P90.16	Forward brake release frequency	0.00–20.00Hz	0.00-20.00	3.00Hz
A81.37	P90.17	Reverse brake	0.00-20.00Hz	0.00-20.00	3.00Hz

User-defined function	Related function code	Name	Description	Setting range	Default
		release frequency			
A81.38	P90.18	Forward brake closing frequency	0.00–20.00Hz	0.00–20.00	3.00Hz
A81.39	P90.19	Reverse brake closing frequency	0.00–20.00Hz	0.00-20.00	3.00Hz
A81.40	P90.20	Delay before forward brake release	0.000–5.000s	0.000– 5.000	0.300s
A81.41	P90.22	Delay after forward brake release	0.000–5.000s	0.000– 5.000	0.300s
A81.42	P90.24	Delay before forward brake closing	0.000–5.000s	0.000– 5.000	0.300s
A81.43	P90.26	Delay after forward brake closing	0.000–5.000s	0.000- 5.000	0.300s
A81.44	P90.31	Enabling the monitoring on brake status	0-1 0: Disable 1: Enable the brake current monitoring (and brake feedback detection).	0–1	0
A81.45	P05.05	Function of HDIA	0: No function	0–95	0
A81.46	P05.06	Function of HDIB	1: Run forward 2: Run reversely 3–95: See the function parameter chapter.	0–95	0
A81.47	P00.03	Max. frequency	0.00-630.00Hz	0.00–630.00	50.00Hz
A81.48	P00.04	Frequency upper limit	0.00–200.00Hz	0.00–200.00	50.00Hz
A81.49	P00.14	Carrier frequency	1.0-15.0kHz	1.0-15.0	4.0kHz
A82.00–A82.4 9	With the sam	ne functions as A81.	.00–A81.49		
A83.00-A83.4 9	With the sam	ne functions as A81	.00–A81.49		

5.6 Motor and macro switchover

5.6.1 Function description

The VFD supports the switchover between parameters of up to three motors. You can switch between motors through terminals. The method is as follows:


- 1. Set the ones place of P08.31 to 0 (using terminal control to switch between motors).
- Select function 35 (switching motor 1 to motor 2) and function 88 (switching motor 1 to motor 3) for the S terminals to perform motor switchover.

In addition, motors can be switched through communication, only if you have set P08.31 to communication, and then the motor switchover command is given through communication.

In addition to motor switchover, up to two groups of control parameters can be switched over as follows:

- Set P90.03 to 1 or 2, and select the motor that requires function parameter switchover. If motor 3
 needs to switch function parameters, set P90.03 to 0.
- Set P90.00 and P90.01. P90.00 corresponds to control parameters of motor 1, while P90.01 corresponds to control parameters of motor 2 or 3.

The following takes terminal-based switchover for example. It is similar for communication-based switchover. (Note that you need to set P90.03=1 or 2 during communication-based switchover.)

Note:

- Switching from motor 1 to motor 2 takes priority over switching from motor 1 to motor 3. That is, the signal for switching from motor 1 to motor 3 is detected only after no signal for switching from motor 1 to motor 2 is detected.
- The motor parameters for motor 2 are separate from those for motor 3. Group P12 is for motor 2 and group P89 is for motor 3.
 - If P90.03=0, the three motors have the same control method parameters, such as V/F and vector control parameters.

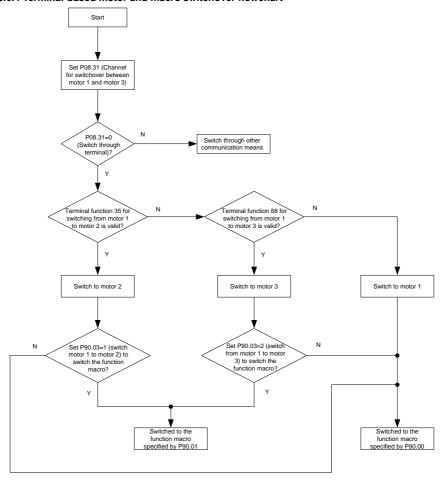
- If P90.03=1, motor 1 and motor 3 have the same control parameters, but motor 2 has the independent running parameters.
- If P90.03=2, motor 1 and motor 2 have the same control parameters, but motor 3 has the independent running parameters.
- During motor switching, the terminals to which application macros have assigned values cannot be used for switching. Otherwise, after the application macro is changed, the value is overwritten to the pre-assigned value, resulting in switching failure.

5.6.2 Description about switching from motor 2 to motor 3

The terminal input function does not contain the ability to switch from motor 2 to motor 3. To switch from motor 2 to motor 3, remove the signal for switching from motor 1 to motor 2, and then input the signal for switching from motor 1 to motor 3. If the signal for switching from motor 1 to motor 2 and switching from motor 1 to motor 3 are given simultaneously, the signal for switching from motor 1 to motor 2 is affected since the switching from motor 1 to motor 2 has higher priority (as mentioned earlier), and motor 2 is used automatically.

For example, If S1 is configured with terminal function 35 (for switching from motor 1 to motor 2) and S2 with terminal function 88 (for switching from motor 1 to motor 3), there are four types of combination:

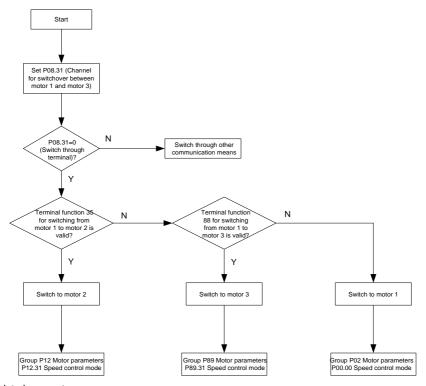
S1 status	S2 status	Present motor status	Contactor switch status
OFF	OFF	Switched to motor 1	KM1 closed, KM2 opened, KM3 opened
ON	OFF	Switched to motor 2	KM1 opened, KM2 closed, KM3 opened
OFF	ON	Switched to motor 3	KM1 opened, KM2 opened, KM3 closed
ON	ON	Switched to motor 2	KM1 opened, KM2 closed, KM3 opened


5.6.3 Motor and macro switchover parameters

Function code	Name	Description	Default
P08.31	Channel switching for motor 1 to motor 3	0x00-0x14 LED Ones place: Switchover channel 0: Switch over through terminals 1: Modbus communication 2: PROFIBUS/CANopen/DeviceNet communication (same as the above) 3: Ethernet communication (same as the above) 4: EtherCAT/PROFINET/EtherNet IP communication 5: Reserved LED tens place: indicates whether to enable switchover during running 0: Disable	0x00

Function code	Name	Description	Default
		1: Enable	
P90.00	Setting of hoisting application macro 1	0–15 0: Common application mode	0
P90.01	Setting of hoisting application macro 2	1: Lifting mode 1 (in open-loop vector control) 2: Lifting mode 2 (in closed-loop vector control) 3: Horizontal moving mode (in space voltage vector control) 4: Tower crane slewing mode 5: Conical motor application mode 6: User-defined application macro 1 7: User-defined application macro 2 8: User-defined application macro 3 9: Lifting mode 3 (in space voltage vector control) 10: Construction elevator mode 11: Closed-loop winching (for lifting in mineral wells and winches) 12: Open-loop winching (for lifting in mineral wells and winches) 13: Construction elevator mode 2 (for medium-speed elevator application) 14: Tower crane slewing without using an eddy current controller in closed-loop vector control 15: Tower crane slewing without using an eddy current controller in space voltage vector control	0
P90.02	User-defined application macro setting	 0-3 0: None 1: Enter the settings of user-defined application macro 1 2: Enter the settings of user-defined application macro 2 3: Enter the settings of user-defined application macro 3 	0
P90.03	Switchover selection for hoisting application macros 1 and 2	0–5 0: No switchover 1: Switch from motor 1 to motor 2 2: Switch from motor 1 to motor 3 3: Switch from the master to the slave 4: Switch from the salve to the master 5: Switch to SVC1 control (open-loop vector	0

Function code	Name	Description	Default
		control 1)	
P94.39	Present application macro	0–18	0


5.6.4 Terminal-based motor and macro switchover flowchart

Note: For user-defined application macros, see 5.5.5 User-defined application macros.

5.6.5 Shortcut multi-motor speed control mode switchover

If you need to only switch over motor parameters and the control mode but not setting function parameters again during motor switchover, you do not need to switch the speed control mode through the application macro. In this case, you only need to set the speed control mode for motor 2 through P12.31 and that for motor 3 through P89.31.

Related parameters:

Function code	Name	Description	Default
P05 03	P05.03 Function of S3	35: Switch from motor 1 to motor 2	0
F05.03		88: Switch from motor 1 to motor 3	
P08.31		0x00-0x14	
		LED Ones place: Switchover channel	
	Channel switching for	0: Switch over through terminals	0x00
	motor 1 to motor 3	1: Modbus communication	UXUU
		2: PROFIBUS/CANopen/DeviceNet	
		communication (same as the above)	

Function code	Name	Description	Default
		3: Ethernet communication (same as the	
		above)	
		4: EtherCAT/PROFINET/EtherNet IP	
		communication	
		5: Reserved	
		LED tens place: indicates whether to enable	
		switchover during running	
		0: Disable	
		1: Enable	
		0: No switchover, which indicates keeping	
	Speed control	consistent with P00.00 of motor 1	
P12.31	switchover mode of	1: Switch to SVC1	0
	motor 2	2: Switch to VF	
		3: Switch to FVC	
		0: No switchover, which indicates keeping	
	Speed control	consistent with P00.00 of motor 1	
P89.31	switchover mode of	1: Switch to SVC1	0
	motor 3	2: Switch to VF	
		3: Switch to FVC	

5.6.6 PG card switchover

For applications that require motor switching, if both motors are equipped with encoders, the PG card needs to be switched simultaneously when switching motors (see 5.6.5 Shortcut multi-motor speed control mode switchover). The following parameters need to be set (the PG card slot of motor 2 needs to be set to 1 in the corresponding bit of P21.34). The encoder parameters of motor 1 correspond to group P20, and the encoder parameters of motor 2 correspond to group P24. After motor switching, the PG card switching automatically follows.

Function code	Name	Description	Setting
	Dual PG card selection	0x0000–0x3111	
		Ones place–Hundreds place: Second PG card position selection	
		Ones place: Selection of PG card at card slot 1	
P21.34		(near the terminal)	0x0000
		Tens place: Selection of PG card at card slot 2	
		Hundreds place: Selection of PG card at card	
		slot 3 (near the terminal)	
		0: Speed closed-loop PG card, corresponding	

Function code	Name	Description	Setting
		to group P20	
		1: Position closed-loop PG card, corresponding	
		to group P24	
		Hundreds place: Speed closed-loop selection	
		0: Disable	
		1: Position closed-loop PG card, as the speed	
		closed-loop for switching to motor 2	
		2: Position closed-loop SSI PG card, using	
		incremental signal as the speed closed-loop	
		selection	
		3: SSI absolute position as the speed	
		closed-loop (at this time, you need to set	
		corresponding installation card slots for the bits	
		from ones place to hundreds place)	

For example, if the PG card for motor 1 needs to be inserted at card slot 1, and the PG card for motor 2 needs to be inserted at card slot 3, you need to set P21.34=0x1100.

5.7 Temperature measuring

5.7.1 Using PT100/PT1000

(1) Through an expansion card

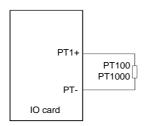


Figure 5-20 PT100/PT1000 measuring temperature through an expansion card

Procedure

- Connect EC-IO502-00 to PT100/PT1000 according to Figure 5-20 PT100/PT1000 measuring temperature through an expansion card.
- Set P92.12=0x01 to enable PT100 to detect temperature or set P92.12=0x10 to enable PT1000
 to detect temperature. In addition, set P92.13=0x01 to enable PT100 to detect disconnection or
 set P92.13=0x10 to enable PT1000 to detect disconnection.
- Check whether P94.16 (PT100 present temperature) and P94.17 (PT100 present digital) are correct, or check whether P94.18 (PT1000 present temperature) and P94.19 (PT1000 present

digital) are correct.

Function parameter settings

Function code	Name	Description	Setting
P92.12	PT100/PT1000 temperature detection enabling	Ones place: PT100 temperature detection 0: Disable 1: Enable Tens place: PT1000 temperature detection 0: Disable 1: Enable	0x01 or 0x10
P92.13	Enabling PT100/PT1000 disconnection detection	Ones place: PT100 disconnection detection 0: Disable 1: Enable Tens place: PT1000 disconnection detection 0: Disable 1: Enable	0x01
P92.14	PT100 detected overtemperature protection threshold	0.0–150.0°C	120.0°C
P92.15	PT100 detected overtemperature pre-alarm point	0.0–150.0°C	100.0°C
P92.16	PT1000 detected overtemperature protection point	0.0–150.0°C	120.0°C
P92.17	PT1000 detected overtemperature pre-alarm point	0.0–150.0°C	100.0°C
P92.18	PT100/PT1000 calibrated temperature upper limit	50.0–150.0°C	120.0°C
P92.19	PT100/PT1000 calibrated temperature lower limit	-20.0–50.0°C	20.0°C
P92.20	Digital of PT100/PT1000 calibrated	0–4 0: Normal detection 1: PT100 lower limit digital calibration autotuning	0

Function code	Name	Description	Setting
	temperature	2: PT100 upper limit digital calibration autotuning	
		3: PT1000 lower limit digital calibration autotuning	
		4: PT1000 upper limit digital calibration autotuning	
		After autotuning is completed, the function code is	
		automatically cleared, and the calibration value is	
		automatically saved to the I/O card.	

(2) Through an Al terminal

Figure 5-21 Wiring between analog terminals and PT100/PT1000

Note: Turn SW2 on the control board to "I" for current output.

Procedure

- Connect PT100/PT1000 according to Figure 5-21 Wiring between analog terminals and PT100/PT1000.
- 2. Set P92.22=1 to select PT100, or set P92.22=2 to select PT1000.
- Set P92.23 (Al detected motor OH protection threshold) and P92.24 (Al detected motor OH pre-alarm threshold).
- 4. Check whether P94.20 (Al detected motor temperature) is correct.

Function parameter settings

Function code	Name	Description	Setting
P92.22	Type of sensor for AI to detect motor temperature	1: PT100 2: PT1000	1 or 2
P92.23	Al detected motor overtemperature protection threshold	0.0–200.0°C When P94.20 is greater than P92.24, the motor overtemperature (OT) fault is reported and the VFD stops.	110.0°C
P92.24	Al detected motor overtemperature	0.0–200.0°C When P94.20 is greater than P92.24, the A-Aot	90.0°C

Function code	Name	Description	Setting
	pre-alarm threshold	alarm is reported, but the VFD still runs.	
P94.20	Al detected motor temperature	-20.0–200.0°C	0.0°C

5.7.2 Using KTY84

Through an Al terminal

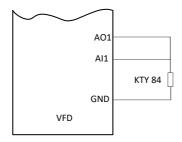


Figure 5-22 Wiring between analog terminals and KTY84

Note: Turn SW2 on the control board to "I" for current output.

Procedure

- 1. Connect KTY84 according to Figure 5-22 Wiring between analog terminals and KTY84.
- 2. Set P92.22=3 to select KTY84.
- Set P92.23 (Al detected motor OH protection threshold) and P92.24 (Al detected motor OH pre-alarm threshold).
- 4. Check whether P94.20 (Al detected motor temperature) is correct.

Function parameter settings

Function code	Name	Description	Setting
P92.22	Type of sensor for AI to detect motor temperature	3: KTY84	3
P92.23	Al detected motor overtemperature protection threshold	0.0–200.0°C When P94.20 is greater than P92.24, the motor overtemperature (OT) fault is reported and the VFD stops.	110.0°C
P92.24	overtemperature	0.0–200.0°C When P94.20 is greater than P92.24, the A-Aot alarm is reported, but the VFD still runs.	90.0°C

Function	Name	Description	Setting
P94.2	Al detected motor temperature	-20.0–200.0°C	0.0°C

5.7.3 Using PTC

(1) Through an expansion card

- (1) You can connect external PTC signal to terminal S8 through the expansion card EC-IO502-00, and set the terminal function to 86 (PTC overtemperature signal is valid).
- (2) You can set P92.21 to determine whether the VFD reports the alarm A-Ptc to run normally or report PtcE to stop when the PTC overtemperature switch signal is valid.

Note: This function supports only terminal S8, the connected PTC acts at $2.5k\Omega$ and supports only dry-contact shared COM input.

Function parameter settings:

Function code	Name	Description	Setting
P92.21	PTC overtemperature selection	O: The PTC function is enabled through terminal selection. When the PTC detected overtemperature alarm A-Ptc is reported, this cannot terminate normal running. 1: The PTC function is valid through terminal selection. When the PTC overtemperature fault PtcE is reported, this results in stop.	0
P25.04	Function of S8	86: Valid signal of PTC overtemperature	86

(2) Through terminal Al1

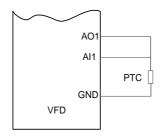


Figure 5-23 Wiring between PTC and analog terminals

Note: Turn SW2 on the control board to "I" for current output. Only Al1 and AO1 are supported for PTC to measure temperature.

Procedure

- 1. Connect the PTC according to Figure 5-23 Wiring between PTC and analog terminals.
- 2. Set P92.22=4 to set the temperature sensor type to PTC.
- 3. Set P06.23 (often using the default value).
- 4. Set P06.24 and P06.25 according to the selected PTC model resistance and temperature curve.
- 5. Check whether the actual PTC resistance is correct.

Function code	Name	Description	Setting
P92.22	Type of sensor for AI to detect motor temperature	4: PTC (supporting only Al1)	4
P06.23	AO1 output current setting	0.000–20.000mA	4.000mA
P06.24	PTC resistance alarm threshold	$0{-}60000\Omega$ When P06.26 is greater than P06.24, the VFD reports the alarm A-Aot and the system runs normally.	750Ω
P06.25	PTC resistance alarm recovery threshold	$0{\text -}60000\Omega$ When P06.26 is less than P06.25, the alarm A-Aot is cleared.	150Ω
P06.26	Actual PTC resistance	0–60000Ω	0Ω

6 Basic operation guidelines

6.1 What this chapter contains

This chapter instructs you how to use the VFD LED keypad that is a standard configuration and commission the VFD common functions.

6.2 LED keypad introduction

The keypad is used to control the VFD, read status data, and set parameters.

Figure 6-1 Keypad

Note:

- The LED keypad is a standard part for the VFD. In addition, the LCD keypad (an optional part)
 can be provided as required. The LCD keypad supports multiple languages, parameter copying
 function, and ten-row high-definition display. The installation size of the LCD is compatible with
 the LED keypad. (For details, see D.3.2 Operating the VFD through the LCD keypad.)
- If you need install the keypad externally (that is, on another position rather than on the VFD), you can use M3 screws to fix the keypad, or you can use the keypad installation bracket to install the keypad. The installation bracket is an optional part for 380V 1.5–30kW and 500V 4–18.5kW VFD models, but it is a standard part for 380V 37–500kW, 500V 22–75kW, and 660V VFD models.

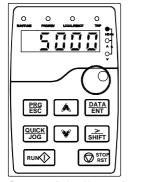
No.	Name		Description
			Off: The VFD is stopped.
		RUN/TUNE	Blinking: The VFD is in parameter autotuning.
			On: The VFD is running.
	Ctatus		Forward or reverse running indicator.
Status 1 indicator	FWD/REV	Off: The VFD is running forward.	
		On: The VFD is running.	
			Indicates whether the VFD is controlled through
		LOCAL/REMOT	the keypad, terminals, or communication.
			Off: The VFD is controlled through the keypad.

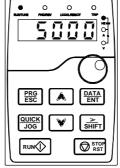
No.	Name					Descr	iption			
					Blinl		The VF	D is	controlled	through
					term	ninals.				
		<u> </u>			On:	The VF	D is con	trolled rer	notely.	
		İ			Faul	It indica	tor			
		F	ΓRIP		Off:	The VF	D is in n	ormal sta	te.	
			IIXII		Blinl	king: Th	ne VFD is	in pre-al	arm state.	
					On:	The VF	D is in fa	ult state.		
		Unit displa	yed curr	ently						
						Hz		Frequ	ency unit	
2	Unit indicator					RPM		Rotation	n speed ur	nit
	Offic indicator					Α		Cur	rent unit	
		_				%		Per	centage	
		4				V		Volt	age unit	
		Five-digit L	ED disp	olays va	ariou	s monit	oring da	ta and al	arm codes	such as
		the frequer	ncy setti	ng and	outp	ut frequ	ency.			
			Display	Mean	s [Display	Means	Display	Means	
			8	0		:	1	2	2	
			3	3		Ч	4	5	5	
3	Digital		5	6		7	7	8	8	
3	display zone		3	9		R	A	<u> </u>	b	
		-	<u> </u>	С		<u>d</u>	d	Ε	E	
		-	<u>- </u>	F L		X n	H N	}	l n	
		_	0	0		- <u>''</u>	P	<u>г</u>	r	
		_	5	S		<u>.</u> E	t	ŭ	U	
		_	U	٧				-	-	
4	Digital potentiometer	Used for fr	equency	regula	tion.	For det	ails, see	the desc	ription of P	08.42.
		PRG ESC	Progra ke	ŭ		ss it to e ameter.	enter or e	xit level-1	l menus o	r delete a
		DATA ENT	Confir		Press it to enter menus in cascading mode or confirm the setting of a parameter.					
5	Keys		UP	key	Pres	ss it to i	ncrease	data or m	ove upwar	d.
			Dowr	n key	Pres	ss it to c	decrease	data or n	nove down	ward.
		SHIFT	Right-s	-					meters rig	

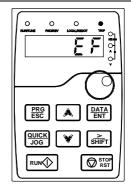
No.	Name	Description			
				running state or to select digits to change during parameter setting.	
		RUN	Run key	Press it to run the product when using the keypad for control.	
		STOP	'	Press it to stop the VFD that is running. The function of this key is restricted by P07.04. In fault alarm state, this key can be used for reset in any control modes.	
		QUICK		The function is determined by P07.02.	

6.3 LED keypad display

The VFD keypad displays information such as the stopped-state parameters, running-state parameters, and fault status, and allows you to modify function codes.


6.3.1 Displaying fault information


After detecting a fault signal, the VFD enters the fault alarm state immediately, the fault code blinks on the keypad, and the TRIP indicator is on. You can perform fault reset by using the STOP/RST key, control terminals, or communication commands.


If the fault persists, the fault code is continuously displayed.

6.3.2 Editing function codes

You can press the PRG/ESC key to enter the editing mode in stopped, running, or fault alarm state (if a user password is used, see the description of P07.00). The editing mode contains two levels of menus in the following sequence: Function code group or function code number → Function code setting. You can press the DATA/ENT key to enter the function parameter display interface. In the function parameter display interface, you can press the DATA/ENT key to save parameter settings or press the PRG/ESC key to exit the parameter display interface.

Parameters displayed in stopped state

Parameters displayed in running state

Information displayed in faulty state

Figure 6-2 Status display

6.4 Operating the VFD through the LED keypad

You can operate the VFD by using the keypad. For details about function code descriptions, see the function code list.

6.4.1 Modifying function codes

The VFD provides three levels of menus, including:

- Function code group number (level-1 menu)
- Function code number (level-2 menu)
- Function code setting (level-3 menu)

Note: When performing operations on the level-3 menu, you can press the PRG/ESC or DATA/ENT key, the set value of the parameter is saved to the control board first, and then the level-2 menu is returned, displaying the next function code. If you press the PRG/ESC key, the level-2 menu is returned directly, without saving the set value of the parameter, and the current function code is displayed.

If you enter the level-3 menu but the parameter does not have a digit blinking, the parameter cannot be modified due to either of the following reasons:

- It is read only. Read-only parameters include actual detection parameters and running record parameters.
- It cannot be modified in running state and can be modified only in stopped state.

Example: Change the value of P00.01 from 0 to 1.

Note: When setting the value, you can press and ▲+▼ to modify the value.

Figure 6-3 Modifying a parameter

6.4.2 Setting a password for the VFD

The VFD provides the user password protection function. When you set P07.00 to a non-zero value, the value is the user password. If password protection is enabled, "0.0.0.0.0" is displayed when you press the PRG/ESC key again to enter the function code editing interface. You need to enter the correct user password to enter the interface.

To disable the password protection function, you need only to set P07.00 to 0.

After you exit the function code editing interface, the password protection function is enabled within 1 minute. If password protection is enabled, "0.0.0.0.0" is displayed when you press the PRG/ESC key again to enter the function code editing interface. You need to enter the correct user password to enter the interface.

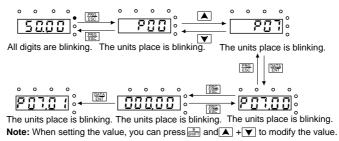


Figure 6-4 Setting a password

6.4.3 Viewing VFD status

The VFD provides group P17 for status viewing. You can enter group P17 for viewing.

All digits are blinking. The units place is blinking. The units place is blinking.

The units place is blinking. The units place is blinking. The units place is blinking.

Note: When setting the value, you can press n and + ▼ to modify the value.

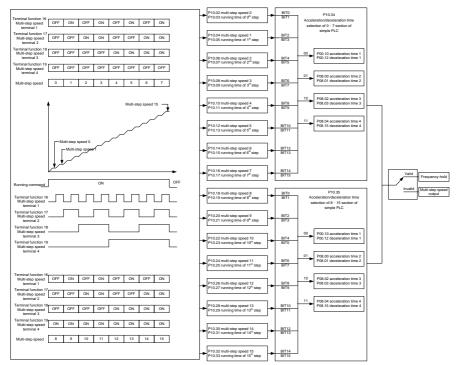
Figure 6-5 Viewing a parameter

6.5 Basic operation description

6.5.1 What this section describes

This section introduces the function modules inside the VFD.

- ♦ Ensure that all terminals have been securely connected.
- Ensure that the motor power matches the VFD power.


6.5.2 Common commissioning procedure

- 6.5.3 Vector control
- 6.5.4 Space voltage vector control mode
- 6.5.5 Torque control
- 6.5.6 Motor parameters
- 6.5.7 Start/stop control
- 6.5.8 Frequency setting
- 6.5.9 Analog input
- 6.5.10 Analog output
- 6.5.11 Digital input
- 6.5.12 Digital output
- 6.5.13 Simple PLC

For details about sections 6.5.2 Common commissioning procedure to 6.5.13 Simple PLC, see the *Goodrive350 Series High-performance Multifunction VFD Operation Manual.*

6.5.14 Multi-step speed running

Set the parameters used in multi-step speed running. The VFD can set 16-step speeds, which are selectable by multi-step speed terminals 1–4, corresponding to multi-step speed 0 to multi-step speed 15.

Related parameter list:

Function code	Name	Description	Default
P05.01–P05.06	Digital input function selection	16: Multi-step speed terminal 1 17: Multi-step speed terminal 2 18: Multi-step speed terminal 3 19: Multi-step speed terminal 4 20: Pause multi-step speed running	/
P10.02	Multi-step speed 0	-100.0–100.0%	0.0%
P10.03	Running time of step 0	0.0-6553.5s (min)	0.0s
P10.04	Multi-step speed 1	-100.0–100.0%	0.0%
P10.05	Running time of step 1	0.0-6553.5s (min)	0.0s

Function code	Name	Description	Default
P10.06	Multi-step speed 2	-100.0–100.0%	0.0%
P10.07	Running time of step 2	0.0-6553.5s (min)	0.0s
P10.08	Multi-step speed 3	-100.0–100.0%	0.0%
P10.09	Running time of step 3	0.0-6553.5s (min)	0.0s
P10.10	Multi-step speed 4	-100.0–100.0%	0.0%
P10.11	Running time of step 4	0.0-6553.5s (min)	0.0s
P10.12	Multi-step speed 5	-100.0–100.0%	0.0%
P10.13	Running time of step 5	0.0-6553.5s (min)	0.0s
P10.14	Multi-step speed 6	-100.0–100.0%	0.0%
P10.15	Running time of step 6	0.0-6553.5s (min)	0.0s
P10.16	Multi-step speed 7	-100.0–100.0%	0.0%
P10.17	Running time of step 7	0.0-6553.5s (min)	0.0s
P10.18	Multi-step speed 8	-100.0–100.0%	0.0%
P10.19	Running time of step 8	0.0-6553.5s (min)	0.0s
P10.20	Multi-step speed 9	-100.0–100.0%	0.0%
P10.21	Running time of step 9	0.0-6553.5s (min)	0.0s
P10.22	Multi-step speed 10	-100.0–100.0%	0.0%
P10.23	Running time of step 10	0.0-6553.5s (min)	0.0s
P10.24	Multi-step speed 11	-100.0–100.0%	0.0%
P10.25	Running time of step 11	0.0-6553.5s (min)	0.0s
P10.26	Multi-step speed 12	-100.0–100.0%	0.0%
P10.27	Running time of step 12	0.0-6553.5s (min)	0.0s
P10.28	Multi-step speed 13	-100.0–100.0%	0.0%
P10.29	Running time of step 13	0.0-6553.5s (min)	0.0s
P10.30	Multi-step speed 14	-100.0–100.0%	0.0%
P10.31	Running time of step 14	0.0-6553.5s (min)	0.0s
P10.32	Multi-step speed 15	-100.0–100.0%	0.0%
P10.33	Running time of step 15	0.0-6553.5s (min)	0.0s
P10.34	ACC/DEC time of steps 0–7 of simple PLC	0x0000-0xFFFF	0x0000
P10.35	ACC/DEC time of steps 8–15 of simple PLC	0x0000–0xFFFF	0x0000

Function code	Name	Description	Default
P17.27	Simple PLC and actual step	0–15	0
F 17.27	of multi-step speed	0-13	0

6.5.15 Graded multi-step speed reference

Graded reference is a speed reference method for hoisting applications. Graded reference supports the graded operating lever mode and graded remote-control mode. Graded reference can implement 6-step speeds by combing the five graded multi-step reference terminals. The combination methods are as follows:

Graded reference terminal 1	Graded reference terminal 2	Graded reference terminal 3	Graded reference terminal 4	Graded reference terminal 5	Speed setting	Function code
OFF	OFF	OFF	OFF	OFF	Graded multi-step speed reference 0	P90.06
NO	OFF	OFF	OFF	OFF	Graded multi-step speed reference 1	P90.07
NO	NO	OFF	OFF	OFF	Graded multi-step speed reference 2	P90.08
NO	NO	NO	OFF	OFF	Graded multi-step speed reference 3	P90.09
NO	NO	NO	NO	OFF	Graded multi-step speed reference 4	P90.10
NO	NO	NO	NO	NO	Graded multi-step speed reference 5	P90.11

Related parameter list:

Function code	Name	Description	Default	
		77: Graded reference terminal 1		
P05.01-P05.06	Digital input function	78: Graded reference terminal 2		
I/O expansion card	selection	79: Graded reference terminal 3	/	
P25.01-P25.08	Selection	80: Graded reference terminal 4		
		81: Graded reference terminal 5		
D00.00	Graded multi-step speed	100 0 100 00/ relative to D00 02	0.00/	
P90.06	reference 0	-100.0–100.0%, relative to P00.03	0.0%	
D00.07	Graded multi-step speed	100 0 100 00/ relative to D00 02	0.00/	
P90.07	reference 1	-100.0–100.0%, relative to P00.03	0.0%	
D00.00	Graded multi-step speed	100 0 100 00/ reletive to D00 03	0.00/	
P90.08	reference 2	-100.0–100.0%, relative to P00.03	0.0%	
D00 00	Graded multi-step speed	100 0 100 00/ relative to D00 03	0.00/	
P90.09	reference 3	-100.0–100.0%, relative to P00.03	0.0%	
D00 40	Graded multi-step speed	100 0 100 00/ relative to D00 03	0.00/	
P90.10	reference 4	-100.0–100.0%, relative to P00.03	0.0%	
D00 44	Graded multi-step speed	100 0 100 00/ reletive to 500 00	0.00/	
P90.11	reference 5	-100.0–100.0%, relative to P00.03	0.0%	

Note: The multi-step settings of a higher grade can be closed only after the multi-step settings of all lower grades are closed.

- 6.5.16 Local encoder input
- 6.5.17 Position control
- 6.5.18 Fault handling

For details about sections 6.5.16 Local encoder input to 6.5.18 Fault handling, see the *Goodrive350 Series High-performance Multifunction VFD Operation Manual.*

7 Function parameters

7.1 What this chapter contains

This chapter lists all the function codes and corresponding description of each function code.

7.2 Function parameter list

The function parameters of the VFD are divided into groups by function. Among the function parameter groups, groups P85–P94 are hoisting function groups, P98 is the analog input and output calibration group, while P99 contains the factory function parameters, which are user inaccessible. Each group includes several function codes (each function code identifies a function parameter). A three-level menu style is applied to function codes. For example, "P08.08" indicates the 8th function code in P08.

The function group numbers correspond to the level-1 menus, the function codes correspond to the level-2 menus, and the function parameters correspond to the level-3 menus.

1. The content of the function code table is as follows:

Column 1 "Function code ": Code of the function group and parameter

Column 2 "Name": Full name of the function parameter.

Column 3 "Description": Detailed description of the function parameter.

Column 4 "Default": Initial value set in factory.

Column 5 "Modify": Whether the function parameter can be modified, and conditions for the modification

"O" indicates that the value of the parameter can be modified when the VFD is in stopped or running state.

"©" indicates that the value of the parameter cannot be modified when the VFD is in running state.

" Indicates that the value of the parameter is detected and recorded, and cannot be modified.

(The VFD automatically checks and constrains the modification of parameters, which helps prevent incorrect modifications.)

- The parameters adopt the decimal system (DEC). If the hexadecimal system is adopted, all bits are mutually independent on data during parameter editing, and the setting ranges at some bits can be hexadecimal (0–F).
- "Default" indicates the factory setting of the function parameter. If the value of the parameter is detected or recorded, the value cannot be restored to the factory setting.
- 4. To better protect parameters, the VFD provides the password protection function. After a password is set (that is, P07.00 is set to a non-zero value), "0.0.0.0.0." is displayed when you press the PRG/ESC key to enter the function code editing interface. You need to enter the correct user password to enter the interface. For the factory parameters, you need to enter the

correct factory password to enter the interface. (You are not advised to modify the factory parameters. Incorrect parameter setting may cause operation exceptions or even damage to the VFD.) If password protection is not in locked state, you can change the password any time. You can set P07.00 to 0 to cancel the user password. When P07.00 is set to a non-zero value during power-on, parameters are prevented from being modified by using the user password function. When you modify function parameters through serial communication, the user password protection function is also applicable and compliant with the same rule.

Group P00—Basic functions

Function code	Name	Description	Default	Modify
		0: SVC 0		
		1: SVC 1		
		2: Space voltage vector control mode		
P00.00	Speed control mode	3: Closed-loop vector control mode	2	0
		Note: Before using a vector control mode (0,		
		1, or 3), enable the VFD to perform motor		
		parameter autotuning first.		
	0	0: Keypad		
P00.01	Channel of running	1: Terminal	0	0
commands	commands	2: Communication		
		0: Modbus/Modbus TCP		
		1: PROFIBUS/CANopen/DeviceNet		
		2: Ethernet		
		3: EtherCAT/PROFINET/EtherNet IP		
		communication		
	Channel selection	4: Programmable expansion card		
P00.02	of communication	5: Wireless communication card	0	0
	running commands	6: Reserved		
		7: USB (Reserved)		
		Note: The options 1, 2, 3, 4, 5, 6, and 7 are		
		add-on functions and are available only		
		when corresponding expansion cards are		
		configured.		
		Used to set the max. output frequency of the		
		VFD. Pay attention to the function code		
P00.03	Max. output	because it is the foundation of the frequency	50.00Hz	0
1 00.00	frequency	setting and the speed of acceleration (ACC)	00.00112	
		and deceleration (DEC).		
		Setting range: Max(P00.04,10.00)–630.00Hz		

Function code	Name	Description	Default	Modify
P00.04	Upper limit of running frequency	The upper limit of the running frequency is the upper limit of the output frequency of the VFD, which is lower than or equal to the max. output frequency. When the set frequency is higher than the upper limit of the running frequency, the upper limit of the running frequency is used for running. Setting range: P00.05–P00.03 (Max. output frequency)	50.00Hz	©
P00.05	Lower limit of running frequency	The lower limit of the running frequency is the lower limit of the output frequency of the VFD, When the set frequency is lower than the lower limit of the running frequency, the lower limit of the running frequency is used for running. Setting range: 0.00Hz–P00.04 (Upper limit of running frequency) Note: Max. output frequency ≥ Upper limit of frequency ≥ Lower limit of frequency	0.00Hz	©
P00.06	Setting channel of A frequency	1: Al1	0	0
P00.07	command Setting channel of B frequency command	2: Al2 3: Al3 4: High-speed pulse HDIA 5: Simple PLC program 6: Multi-step speed running 7: PID control 8: Modbus/Modbus TCP communication 9: PROFIBUS/CANopen/DeviceNet communication 10: Ethernet communication 11: High-speed pulse HDIB 12: Pulse train AB 13: EtherCAT/PROFINET/EtherNet IP communication 14: Programmable expansion card 15: Multi-step speed run 16: Reserved	1	0

Function code	Name	Description	Default	Modify
P00.08	Reference object of B frequency command	0: Max. output frequency 1: A frequency command	0	0
P00.09	Combination mode of setting source	0: A 1: B 2: (A+B) 3: (A- B) 4: Max(A, B) 5: Min. (A, B)	0	0
P00.10	Set frequency via keypad	When A and B frequency commands select the keypad for setting, the value of the function code is the original setting one of the frequency data of the VFD. Setting range: 0.00Hz–P00.03 (Max. output frequency)	50.00Hz	0
P00.11	ACC time 1	ACC time means the time needed if the VFD speeds up from 0Hz to the max. output	Model depended	Ο
P00.12	DEC time 1	frequency (P00.03). DEC time means the time needed if the VFD speeds down from the max. output frequency (P00.03) to 0Hz. The VFD has four groups of ACC/DEC time, which can be selected by P05. The factory default ACC/DEC time of the VFD is the first group. P00.11 and P00.12 setting range: 0.0–3600.0s	Model depended	0
P00.13	Running direction	0: Run at the default direction. 1: Run at the opposite direction. 2: Disable reverse running. Note: It can be modified only when P11.26 is 1 indicating special functions are enabled.	0	0
P00.14	Carrier frequency setting	Carrier frequency 1kHz 10kHz 1skHz Low High Low High High High High High	Model depended	0

Function code	Name		Description			Default	Modify		
		Ма	pping	between m	odels	and o	carrier		
		fred	quencies	:					
			ľ	Model		lt carrie uency	r		
			380V	0.4–11kW 15kW and	,	4kHz 1.5kHz			
				higher 22–55kW		4kHz	\dashv		
			660V	75kW and higher		2kHz			
		Adv	vantage	of high car	rier freq	quency:	ideal		
			ŭ	eform, little c		. ,			
		and	d motor n	ioise.					
		Dis	advanta	ge of high	carrier	r frequ	uency:		
		inc	reasing	the switch I	oss, inc	reasing	VFD		
		ten	nperature	and the in	mpact to	the o	output		
		cap	acity. Ti	ne VFD need	ds to de	erate on	high		
				ency. At the s			·		
		and		ical magnet	ic inter	rference	will		
			rease.						
				ntrary, an ex	•				
				nay cause uns	•				
			quency, c illation.	decrease the t	orque, or	r even i	ead to		
				frequency ha	s been p	roperly	set in		
				before the	•				
			-	u do not need					
		Wh	en the f	requency use	d exceed	ds the c	default		
		car	rier frequ	uency, the VF	D needs	to dera	ate by		
		109	% for eac	h increase of	1k carrie	er freque	ency.		
		Set	ting rang	je: 1.0–15.0kł	Ηz				
		1:0	No opera	tion					
		1: F	Rotary au	utotuning.					
		Co	mprehen	sive motor pa	rameter	autotun	ing. It		
P00.15	Motor parameter			ended to us		-	tuning	0	0
. 00.10	autotuning		-	control accura	-			,	_
		2:	Static	autotuning	•	omprehe			
			-	static autotur	-				
		wh	ere the r	notor cannot	be disco	nnected	from		

Function code	Name	Description	Default	Modify
		load. 3: Static autotuning 2 (partial autotuning); when the present motor is motor 1, only P02.06, P02.07, and P02.08 are autotuned; when the present motor is motor 2, only P12.06, P12.07, and P12.08 are autotuned. 4: Dynamic autotuning 2 (valid only for AMs) 5: Partial parameter static autotuning 2 (valid		
P00.16	AVR function	only for AMs) 0: Invalid 1: Valid during the whole process The auto-adjusting function of the VFD can eliminate the impact on the output voltage of the VFD because of the bus voltage fluctuation.	1	0
P00.18	Function parameter restoration	Setting range of P00.18: 0–6 0: No operation 1: Restore to default values (excluding motor parameters) 2: Clear fault records 3: Lock keypad parameters 4: Reserved 5: Restore to default values (factory test mode) 6: Restore to default values (including motor parameters) Note: After the selected operation is performed, the function code is automatically restored to 0. Restoring the default values may delete the user password. Exercise caution when using this function.	0	©

Group P01—Start and stop control

Name	Description	Default	Modify
J	ŭ	0	0
	'		
	Running mode of start	0: Direct start Running mode of start 2: Start after DC braking 2: Start after speed tracking	0: Direct start Running mode of 1: Start after DC braking 0

Function code	Name	Description	Default	Modify
		1 indicating special functions are enabled.		
P01.01	Starting frequency of direct start	The function code indicates the initial frequency during VFD start. See P01.02 (Starting frequency hold time) for detailed information. Setting range: 0.00–50.00Hz	0.50Hz	0
P01.02	Hold time of starting frequency	Frequency f fmax Time t It is set by P01.01 It is set by P01.02 Setting a proper starting frequency can increase the torque during VFD start. During the hold time of the starting frequency, the output frequency of the VFD is the starting frequency. And then, the VFD runs from the starting frequency is lower than the starting frequency, the VFD stops running and keeps in the standby state. The starting frequency is not limited in the lower limit frequency. Setting range: 0.0–50.0s	0.0s	0
P01.03	Braking current before start	The VFD performs DC braking with the braking current before start and it speeds up after the	0.0%	0
P01.04	Braking time before start	DC braking time. If the set DC braking time is 0, DC braking is invalid. Stronger braking current indicates larger braking power. The DC braking current before start is a percentage of the VFD rated output current. Setting range of P01.03: 0.0–100.0% Setting range of P01.04: 0.00–50.00s	0.00s	0
P01.05	ACC/DEC mode	Used to indicate the changing mode of the frequency during start and running. 0: Linear type. The output frequency increases	0	0

Function code	Name	Description	Default	Modify
		1: S curve. The output frequency increases or decreases according to the S curve. The S curve is generally applied to elevators, conveyors, and other application scenarios where smoother start or stop is required. Output frequency f fmax Output frequency f 2: Slewing application mode Note: If mode 1 is selected, set P01.06,		
P01.06	Time of starting segment of DEC S curve	P01.07, P01.27, and P01.28 accordingly. The curvature of S curve is determined by the ACC range and ACC/DEC time. © Output frequency f	0.1s	0
P01.07	Time of ending segment of ACC S curve	t1=P01.06 t2=P01.07 t3=P01.27 t4=P01.28 Setting range: 0.0–50.0s	0.1s	0
P01.08	Stop mode	O: Decelerate to stop. After a stop command takes effect, the VFD lowers output frequency based on the DEC mode and the defined DEC time; after the frequency drops to the stop speed (P01.15), the VFD stops. 1: Coast to stop. After a stop command takes effect, the VFD stops output immediately; and the load coasts to stop according to mechanical	0	0

Function code	Name	Description	Default	Modify
		inertia.		
P01.09	Starting frequency of DC braking for stop	Starting frequency of DC braking for stop: During the deceleration to stop, the VFD starts DC braking for stop when running frequency	0.00Hz	0
P01.10	Demagnetization time	reaches the starting frequency determined by P01.09.	0.00s	0
P01.11	DC braking current for stop	Wait time before DC braking: The VFD blocks the output before starting DC braking. After this	0.0%	0
P01.12	DC braking time for stop	wait time, DC braking is started so as to prevent overcurrent caused by DC braking at high speed. DC braking current for stop: It indicates the applied DC braking energy. Stronger current indicates greater DC braking effect. DC braking time for stop: It indicates the hold time of DC braking. If the time is 0, DC braking is invalid, and the VFD decelerates to stop within the specified time. Setting range of P01.09: 0.00Hz–P00.03 (Max. output frequency) Setting range of P01.11: 0.0–100.0% (of the rated VFD output current) Setting range of P01.12: 0.0–50.0s	0.00s	0
P01.13	FWD/REV running deadzone time	This function code specifies the transition time of the switching in FWD/REV running switching mode specified by P01.14.	0.0s	0

Function	Name	Description	Default	Modify
code		•		·
		Output frequency f Forward Forward Starting frequency Switch over after starting frequency Switch over after zero frequency Time t		
		Setting range: 0.0-3600.0s		
		0: Switch at zero frequency		
P01.14	FWD/REV running switching mode	Switch at the starting frequency Switch after the speed reaches the stop speed with a delay	1	0
P01.15	Stop speed	0.00–100.00Hz	0.20Hz	0
P01.16	Stop speed detection mode	O: Detect by the set speed (unique in space voltage vector control mode) 1: Detect by the feedback speed	0	0
P01.17	Stop speed detection time	0.00–100.00s	0.50s	0
P01.18	Terminal-based running command protection at power-on	When the channel of running commands is terminal control, the system detects the state of the running terminal during power-on. 0: The terminal running command is invalid at power-on. Even the running command is considered as valid during power-on, the VFD does not run and it keeps the protection state until the running command is canceled and enabled again. 1: The terminal running command is valid at power-on. If the running command is considered as valid during power-on, the VFD is started automatically after the initialization. 2: The terminal running command is invalid at power-on, and a fault is reported. (Power-on terminal command exception POE). During power on, the VFD does not run but reports the fault, although the running command terminal is valid. The fault disappears only when the running command is canceled.	0	0

Function code	Name	Description	Default	Modify
		Note: Exercise caution before using this function. Otherwise, serious result may follow.		
P01.19	Action selected when running frequency less than frequency lower limit (valid when frequency lower limit greater than 0)	The function code determines the running state of the VFD when the set frequency is lower than the lower-limit one. 0x00–0x12 Ones place: Action selection 0: Run at the frequency lower limit 1: Stop 2: Sleep Tens place: Stop mode 0: Coast to stop 1: Decelerate to stop The VFD coasts to stop or decelerates to stop based on the tens place setting when the set frequency is lower than the lower-limit one. When the set frequency exceeds the lower limit one again and it lasts for the time set by P01.20, the VFD resumes the running state automatically.	0x00	0
P01.20	Wake-up-from- sleep delay	The function code determines the wake-up-from-sleep delay time. When the running frequency of the VFD is lower than the lower limit, the VFD becomes standby. When the set frequency exceeds the lower limit one again and it lasts for the time set by P01.20, the VFD runs automatically. Set frequency curve: Running frequency curve: Running frequency curve: 11 < P01.20, the VFD does not run (1+12 > P01.20, the VFD runs (0-P01.34, deep belay runs) Setting range: 0.0—3600.0s (valid only when	0.0s	0

Function code	Name	Description	Default	Modify
		P01.19 ones place= 2)		
P01.21	Restart after power off	The function code indicates whether the VFD automatically runs after re-power on. 0: Disable 1: Enable. If the restart condition is met, the VFD will run automatically after waiting the time defined by P01.22.	0	0
P01.22	Wait time for restart after power-off	The function code indicates the wait time before the automatic running of the VFD that is re-powered on. Output frequency 11=P01.22 12=P01.23 t Power on Setting range: 0.0–3600.0s (valid only when P01.21 = 1)	1.0s	0
P01.23	Start delay	After a VFD running command is given, the VFD restarts running output with the delay defined by P01.23 from the standby state, to implement brake release. Setting range: 0.0–600.0s	0.0s	0
P01.24	Stop speed delay	0.0–600.0s	0.0s	0
P01.25	Open-loop 0Hz output selection	Output without voltage Output with voltage Output with the DC braking current for stop	0	0
P01.26	DEC time for emergency stop	0.0–60.0s	2.0s	0
P01.27	Time of starting segment of DEC S curve	0.0–50.0s	0.1s	0
P01.28	Time of ending segment of DEC S curve	0.0–50.0s	0.1s	0
P01.29	Short-circuit braking current	When the VFD starts in direct start mode (P01.00 = 0), set P01.30 to a non-zero value	0.0%	0

Function code	Name	Description	Default	Modify
	Hold time of	to enter short-circuit braking.		
P01.30	short-circuit braking	During stop, if the running frequency of VFD is	0.00s	0
	for start	lower than the starting frequency of brake for		
		stop (P01.09), set P01.31 to a non-zero value		
		to enter short-circuit braking for stop, and then		
		carry out DC braking in the time specified by		
	Hold time of	P01.12. (Refer to the descriptions for		
P01.31	short-circuit braking	P01.09–P01.12.)	0.00s	0
	for stop	P01.29 setting range: 0.0–150.0% (of the rated		
		VFD output current)		
		Setting range of P01.30: 0.0-50.0s		
		Setting range of P01.31: 0.0-50.0s		
P01.32	Pre-exciting time for	0–10.000s	0.000s	0
	jogging			
	Starting frequency			
P01.33	of braking for stop	0-P00.03	0.00Hz	0
	in jogging			
P01.34	Sleep delay	0–3600.0s	0.0s	0

Group P02—Parameters of motor 1

Function code	Name	Description	Default	Modify
P02.00	Type of motor 1	Asynchronous motor (AM) Synchronous motor (SM)	0	0
P02.01	Rated power of AM 1	0.1–3000.0kW	Model depended	0
P02.02	Rated frequency of AM 1	0.01Hz-P00.03 (Max. output frequency)	50.00Hz	0
P02.03	Rated speed of AM 1	1–60000RPM	Model depended	0
P02.04	Rated voltage of AM 1	0–1200V	Model depended	0
P02.05	Rated current of AM 1	0.8–6000.0A	Model depended	0
P02.06	Stator resistance of AM 1	0.001–65.535Ω	Model depended	0
P02.07	Rotor resistance of AM 1	0.001–65.535Ω	Model depended	0

Function code	Name	Description	Default	Modify
P02.08	Leakage inductance of AM 1	0.1–6553.5mH	Model depended	0
P02.09	Mutual inductance of AM 1	0.1–6553.5mH	Model depended	0
P02.10	No-load current of AM 1	0.1–6553.5A	Model depended	0
P02.11	Magnetic saturation coefficient 1 of iron core of AM 1	0.0–100.0%	80.0%	0
P02.12	Magnetic saturation coefficient 2 of iron core of AM 1	0.0–100.0%	68.0%	0
P02.13	Magnetic saturation coefficient 3 of iron core of AM 1	0.0–100.0%	57.0%	0
P02.14	Magnetic saturation coefficient 4 of iron core of AM 1	0.0–100.0%	40.0%	0
P02.15	Rated power of SM 1	0.1–3000.0kW	Model depended	0
P02.16	Rated frequency of SM 1	0.01Hz-P00.03 (Max. output frequency)	50.00Hz	0
P02.17	Number of pole pairs of SM 1	1–128	2	0
P02.18	Rated voltage of SM 1	0–1200V	Model depended	0
P02.19	Rated current of SM 1	0.8–6000.0A	Model depended	0
P02.20	Stator resistance of SM 1	0.001–65.535Ω	Model depended	0
P02.21	Direct-axis inductance of SM 1	0.01–655.35mH	Model depended	0
P02.22	Quadrature-axis inductance of SM 1	0.01–655.35mH	Model depended	0
P02.23	Counter-emf of SM 1	0–10000	300	0
P02.24	Initial pole position	0x0000–0xFFFF	0x0000	•

Function code	Name	Description	Default	Modify
	of SM 1			
P02.25	Identification current of SM 1	0%–50% (of the motor rated current)	10%	•
P02.26	Overload protection selection of motor 1	0: No protection 1: Common motor protection (with low-speed compensation). As the cooling effect of a common motor is degraded at low speed running, the corresponding electronic thermal protection value needs to be adjusted properly, the low compensation indicates lowering the overload protection threshold of the motor whose running frequency is lower than 30Hz. 2: Variable-frequency motor protection (without low speed compensation). Because the heat dissipation function for a variable-frequency motor is not impacted by the rotation speed, it is not necessary to adjust the protection value at low speed running.	2	0
P02.27	·	Motor overload multiples M=lout/(In*K) In is rated motor current, lout is VFD output current, K is motor overload protection coefficient. A smaller value of "K" indicates a bigger value of "M". When M=116%, protection is performed after motor overload lasts for 1 hour; when M=200%, protection is performed after motor overload lasts for 60 seconds; and when M≥400%, protection is performed immediately. Time t 1h Motor overload multiple 116% 200% Setting range: 20.0%-150.0%	100.0%	0
P02.28	Power display	The function code can be used to adjust the	1.00	0

Function code	Name	Description	Default	Modify
	calibration	power display value of motor 1. However, it		
	coefficient of motor	does not affect the control performance of the		
	1	VFD.		
		Setting range: 0.00-3.00		
		0: Display by motor type. In this mode, only		
	Davamatar diamlas	parameters related to the present motor type		
P02.29	Parameter display	are displayed.	0	0
	of motor 1	1: Display all. In this mode, all the motor		
		parameters are displayed.		
P02.30	System inertia of	0–30.000kgm²	0kgm ²	0
1 02.00	motor 1	0-30.000kgm	okgiii	0
P02.31	Max. slip limit	When P02.31=0, the max. slip limit cannot be	0	0
F 02.31	iviax. Slip IIIIII	used.	U	9
P02.32	Reserved	0–65535	0	•

Group P03--Vector control of motor 1

Function code	Name	Description	Default	Modify
P03.00	Speed-loop proportional gain 1	The parameters P03.00–P03.05 are applicable only to vector control mode. Below the	10.0	0
P03.01	Speed-loop integral time 1	switching frequency 1 (P03.02), the speed-loop PI parameters are: P03.00 and P03.01. Above	0.200s	0
P03.02	Low-point frequency for switching	the switching frequency 2 (P03.05), the speed-loop PI parameters are: P03.03 and P03.04. PI parameters are obtained according	5.00Hz	0
P03.03	Speed-loop proportional gain 2	to the linear change of two groups of parameters. See the following figure:	20.0	0
P03.04	Speed-loop integral time 2	PI parameter	0.200s	0
P03.05	High-point frequency for switching	P03.03, P03.04 Output frequency f P03.02 P03.05 The speed loop dynamic response characteristics of vector control can be adjusted by setting the proportional coefficient and integral time of speed regulator. Increasing	10.00Hz	0

Function code	Name	Description	Default	Modify
		proportional gain or reducing integral time can accelerate dynamic response of speed loop; however, if the proportional gain is too large or integral time is too small, system oscillation and overshoot may occur; if proportional gain is too small, stable oscillation or speed offset may occur. PI parameters have a close relationship with the inertia of the system. Adjust PI parameters depending on different loads to meet various demands. Setting range of P03.00: 0.0–200.0 Setting range of P03.01: 0.000–10.000s Setting range of P03.02: 0.00Hz–P03.05 Setting range of P03.03: 0.0–200.0 Setting range of P03.04: 0.000–10.000s Setting range of P03.05: P03.02–P00.03 (Max.		
P03.06	Speed-loop output	output frequency) 0–8 (corresponding to 0–2 ⁸ /10ms)	0	0
P03.07	Electromotive slip compensation	Slip compensation coefficient is used to adjust the slip frequency of the vector control and improve the speed control accuracy of the	100%	0
P03.08	slip compensation	system. Adjusting the parameter properly can control the speed steady-state error. Setting range: 50–200%	100%	0
P03.09	Current loop proportional coefficient P	Setting range: 0–65535 Note: The two function codes impact the dynamic	1000	0
P03.10	Current-loop integral coefficient I	response speed and control accuracy of the system. Generally, you do not need to modify the two function codes. • Applicable to SVC mode 0 (P00.00=0), SVC mode 1 (P00.00=1), and closed-loop vector control mode (P00.00=3).	1000	0
P03.11	Torque setting	0–1: Keypad (P03.12)	0	0

Function code	Name	Description	Default	Modify
	method	2: Al1 3: Al2 4: Al3 5: Pulse frequency HDIA 6: Multi-step torque 7: Modbus/Modbus TCP communication 8: PROFIBUS/CANopen/DeviceNet communication 9: Ethernet communication 10: Pulse frequency HDIB 11: EtherCAT/PROFINET/EtherNet IP communication 12: Programmable expansion card 13: Reserved Note: For these settings, 100% corresponds to the motor rated current.		
P03.12	Torque set through keypad	-300.0%–300.0% (of the motor rated current)	20.0%	0
P03.13	Torque reference filter time	0.000–10.000s	0.010s	0
P03.14	Setting source of forward rotation frequency upper limit in torque control	0: Keypad (P03.16) 1: Al1 2: Al2 3: Al3 4: Pulse frequency HDIA 5: Multi-step setting 6: Modbus/Modbus TCP communication 7: PROFIBUS/CANopen/DeviceNet communication 8: Ethernet communication 9: Pulse frequency HDIB 10: EtherCAT/PROFINET/EtherNet IP communication 11: Programmable expansion card 12: Reserved Note: For these settings, 100% corresponds to the max. frequency.	0	0
P03.15	Setting source of reverse rotation	0: Keypad (P03.17) 1–12: Same as those for P03.14	0	0

Function code	Name	Description	Default	Modify
coue	upper-limit			
	frequency in torque			
	control			
P03.16	Forward rotation frequency upper limit set through keypad in torque control	Used to set the frequency upper limits. 100% corresponds to the max. frequency. P03.16 specifies the value when P03.14=1, while	50.00Hz	0
P03.17	Reverse rotation upper-limit frequency set through keypad in torque control	P03.17 specifies the value when P03.15=1. Setting range: 0.00Hz–P00.03 (Max. output frequency)	50.00Hz	0
P03.18	Setting source of electromotive torque upper limit	0: Keypad (P03.20) 1: Al1 2: Al2 3: Al3 4: Pulse frequency HDIA 5: Modbus/Modbus TCP communication 6: PROFIBUS/CANopen/DeviceNet communication 7: Ethernet communication 8: Pulse frequency HDIB 9: EtherCAT/PROFINET/EtherNet IP communication 10: Programmable expansion card 11: Reserved Note: For these settings, 100% corresponds to the motor rated current.	0	0
P03.19	Setting source of braking torque upper limit	0: Keypad (P03.21) 1–11: Same as those for P03.18	0	0
P03.20	Electromotive torque upper limit set through keypad	0.0–300.0% (of the motor rated current) Note: It can be modified only when the ones	250.0%	0
P03.21	Braking torque upper limit set through keypad	place of P11.26 = 1 indicating special functions are enabled.	250.0%	0
P03.22	Weakening	Used when the AM is in flux-weakening control.	0.8	0

Function code	Name	Description	Default	Modify
	coefficient in constant power zone	T Flux-weakening		
P03.23	Lowest weakening point in constant power zone	Min. flux-weakening limit of motor The function codes P03.22 and P03.23 are valid at constant power. The motor enters the flux-weakening state when the motor runs above the rated speed. Change the flux-weakening curvature by modifying the flux-weakening control coefficient. The larger the coefficient, the steeper the curve, the smaller the coefficient, the smoother the curve. Setting range of P03.22: 0.1–2.0 Setting range of P03.23: 10%–100.0%	20%	0
P03.24	Max. voltage limit	P03.24 sets the max. output voltage of the VFD, which is the percentage of motor rated voltage. Set the value according to onsite conditions. Setting range: 0.0–120.0%	100.0%	0
P03.25	Pre-exciting time	Pre-exciting is performed for the motor when the VFD starts up. A magnetic field is built up inside the motor to improve the torque performance during the start process. Setting range: 0.000–10.000s	0.000s	0
P03.26	Flux-weakening proportional gain	0–8000	1000	0
P03.27	Speed display selection in vector control	Display the actual value Display the set value	0	0
P03.28	Static friction compensation coefficient	0.0–100.0%	0.0%	0
P03.29	Corresponding	0.50Hz-P03.31	1.00Hz	0

Function code	Name	Description	Default	Modify
	frequency point of static friction			
P03.30	High speed friction compensation coefficient	0.0–100.0%	0.0%	0
P03.31	Corresponding frequency of high speed friction torque	P03.29–400.00Hz	50.00Hz	0
P03.32	Enabling torque control	0: Disable 1: Enable	0	0
P03.33	Flux-weakening integral gain	0–8000	1200	0
P03.34	Flux-weakening control mode selection	0x000-0x111 Ones place: Control mode selection 0: Mode 0 1: Mode 1 In Mode 0, the weak magnetic current obtained from the weak magnetic curve is used for calculation of slip coefficient, and the filter time is fixed to 1 (Mode0 is stable). In Mode 1, the actual weak magnetic current is used for calculation of slip coefficient, and the filter time is fixed to 1. Tens place: Compensation of inductance saturation coefficient 0: Yes 1: No Hundreds place: Current loop feedforward compensation 0: Yes 1: No	0x000	0
P03.35	Control optimization setting	0x0000–0x1111 Ones place: Torque command selection 0: Torque reference 1: Torque current reference Tens place: Reserved Hundreds place: indicates whether to enable	0x0000	0

Function code	Name	Description	Default	Modify
		speed-loop integral separation 0: Disable 1: Enable Thousands place: Reserved		
P03.36	Speed-loop differential gain	0.00-10.00s	0.00s	0
P03.37	High-frequency current-loop proportional coefficient	In the closed-loop vector control mode (P00.00=3), when the frequency is lower than the current-loop high-frequency switching threshold (P03.39), the current-loop PI	1000	0
P03.38	High-frequency current-loop integral coefficient	parameters are P03.09 and P03.10; and when the frequency is higher than the current-loop high-frequency switching threshold, the	1000	0
P03.39	Current-loop high-frequency switching threshold	current-loop PI parameters are P03.37 and P03.38. Setting range of P03.37: 0–65535 Setting range of P03.38: 0–65535 Setting range of P03.39: 0.0–100.0% (of the max. frequency)	100.0%	0
P03.40	Enabling inertia compensation	0: Disable 1: Enable	0	0
P03.41	Upper limit of inertia compensation torque	The max. inertia compensation torque is limited to prevent inertia compensation torque from being too large. Setting range: 0.0–150.0% (of the motor rated torque)	10.0%	0
P03.42	Inertia compensation filter times	Filter times of inertia compensation torque, used to smooth inertia compensation torque. Setting range: 0–10	7	0
P03.43	Inertia identification torque	Due to friction force, it is required to set certain identification torque for the inertia identification to be performed properly. Setting range: 0.0–100.0% (of the motor rated torque)	10.0%	0
P03.44	Enabling inertia identification	0: No operation 1: Enable	0	0
P03.45	Current-loop proportional	0–65535	0	0

Function code	Name	Description	Default	Modify
	coefficient after			
	autotuning			
P03.46	Current-loop			
	integral coefficient	0–65535	0	0
	after autotuning			

Group P04—V/F control

Function code	Name	Description	Default	Modify
P04.00	V/F curve setting of motor 1	This group of function code defines the V/F curve of motor 1 to meet the needs of different loads. 0: Straight-line V/F curve, applicable to constant torque loads 1: Multi-point V/F curve 2: Torque-down V/F curve (power of 1.3) 3: Torque-down V/F curve (power of 1.7) 4: Torque-down V/F curve (power of 2.0) Curves 2 – 4 are applicable to the torque loads such as fans and water pumps. You can adjust according to the characteristics of the loads to achieve best performance. 5: Customized V/F (V/F separation); in this mode, V can be separated from F, and F can be adjusted through the frequency setting channel specified by P00.06 or the voltage setting channel specified by P04.27 to change the characteristics of the curve. Note: In the figure, V _b indicates the motor rated voltage and f _b indicates the motor rated frequency.	0	
P04.01	Torque boost of	In order to compensate for low-frequency	0.0%	0

Function code	Name	Description	Default	Modify
	motor 1	torque characteristics, you can make some		
P04.02	Torque boost cut-off of motor 1	boost compensation for the output voltage. P04.01 is relative to the max. output voltage V _b . P04.02 defines the percentage of cut-off frequency of manual torque boost to the rated motor frequency f _b . Torque boost can improve the low-frequency torque characteristics of V/F. You need to select torque boost based on the load. For example, larger load requires larger torque boost, however, if the torque boost is too large, the motor will run at over-excitation, which may cause increased output current and motor overheating, thus decreasing the efficiency. When torque boost is set to 0.0%, the VFD uses automatic torque boost. Torque boost cut-off threshold: Below this frequency threshold, torque boost is valid; exceeding this threshold will invalidate torque boost. Output voltage 20.0%	0	
P04.03	V/F frequency point 1 of motor 1	When P04.00 = 1 (multi-dot V/F curve), you can set the V/F curve through P04.03–P04.08.	0.00Hz	0
P04.04	V/F voltage point 1 of motor 1	The V/F curve is generally set according to the load characteristics of the motor.	00.0%	0
P04.05	V/F frequency point 2 of motor 1	Note: V1 < V2 < V3, f1 < f2 < f3 Too high voltage for low frequency will cause motor	0.00Hz	0
P04.06	V/F voltage point 2 of motor 1	overheat or damage and cause VFD overcurrent stall or overcurrent protection.	0.0%	0

Function code	Name	Description	Default	Modify
P04.07	V/F frequency point 3 of motor 1	Output voltage	0.00Hz	0
		V2 J Output Ifrequency(Hz) f1 f2 f3 f _b Setting range of P04.03: 0.00Hz–P04.05 Setting range of P04.04: 0.0%–110.0% (of the		
P04.08	V/F voltage point 3 of motor 1	rated voltage of motor 1) Setting range of P04.05: P04.03–P04.07 Setting range of P04.06: 0.0%–110.0% (of the rated voltage of motor 1) Setting range of P04.07: P04.05–P02.02 (Rated frequency of AM 1) or P04.05– P02.16 (Rated frequency of SM 1) Setting range of P04.08: 0.0%–110.0% (of the rated voltage of motor 1)	00.0%	0
P04.09	V/F slip compensation gain of motor 1	Used to compensate for the motor rotating speed change caused by load change in the space voltage vector mode, and thus improve the rigidity of the mechanical characteristics of the motor. You need to calculate the rated slip frequency of the motor as follows: $ \triangle f = f_b \text{-} n^* p / 60 $ Of which, f_b is the rated frequency of the motor 1, corresponding to function code P02.02. n is the rated rotating speed of the motor 1, corresponding to the function code P02.03. p is the number of pole pairs of the motor. 100.0% corresponds to the rated slip frequency $\triangle f$ of motor 1. Setting range: 0.0–200.0%	0.0%	0
P04.10	Low-frequency oscillation control factor of motor 1	In space voltage vector control mode, the motor, especially the large-power motor, may experience current oscillation at certain	10	0
P04.11	High-frequency oscillation control	frequencies, which may cause unstable motor running, or even VFD overcurrent. You can	10	0

Function code	Name	Description	Default	Modify
	factor of motor 1	adjust the two function codes properly to		
P04.12	Oscillation control threshold of motor 1	eliminate such phenomenon. Setting range of P04.10: 0–100 Setting range of P04.11: 0–100 Setting range of P04.12: 0.00Hz–P00.03 (Max. output frequency)	30.00Hz	0
P04.13	V/F curve setting of motor 2	This group of function code defines the V/F curve of motor 2 to meet the needs of different loads. 0: Straight-line V/F curve 1: Multi-point V/F curve 2: Torque-down V/F curve (power of 1.3) 3: Torque-down V/F curve (power of 1.7) 4: Torque-down V/F curve (power of 2.0) 5: Customized V/F curve (V/F separation) Note: Refer to the description for P04.00.	0	0
P04.14	Torque boost of motor 2	Setting range of P04.14: 0.0%: Automatic; 0.1%-10.0%	0.0%	0
P04.15	Torque boost cut-off of motor 2	Setting range of P04.15: 0.0%–50.0% (of the rated frequency of motor 2) Note: Refer to the descriptions for P04.01 and P04.02.	20.0%	0
P04.16	V/F frequency point 1 of motor 2	P04.16 setting range: 0.00Hz–P04.18 Setting range of P04.17: 0.0%–110.0% (of the	0.00Hz	0
P04.17	V/F voltage point 1 of motor 2	rated voltage of motor 2) Setting range of P04.18: P04.16–P04.20	00.0%	0
P04.18	V/F frequency point 2 of motor 2	Setting range of P04.19: 0.0%-110.0% (of the rated voltage of motor 2)	0.00Hz	0
P04.19	V/F voltage point 2 of motor 2	Setting range of P04.20: P04.18–P12.02 (Rated frequency of AM 2) or P04.18– P12.16	00.0%	0
P04.20	V/F frequency point 3 of motor 2	(Rated frequency of SM 2) Setting range of P04.21: 0.0%-110.0% (of the	0.00Hz	0
P04.21	V/F voltage point 3 of motor 2	rated voltage of motor 2) Note: Refer to the descriptions for P04.03 and P04.08.	00.0%	0
P04.22	V/F slip compensation gain of motor 2	Used to compensate for the motor rotating speed change caused by load change in the space voltage vector mode, and thus improve	0.0%	0

Function code	Name	Description	Default	Modify
oouc		the rigidity of the mechanical characteristics of		
		the motor. You need to calculate the rated slip		
		frequency of the motor as follows:		
		$\triangle f = f_b - n^* p/60$		
		Of which, f _b is the rated frequency of the motor		
		2, corresponding to function code P12.02. n is		
		the rated rotating speed of the motor 2,		
		corresponding to the function code P12.03. p is		
		the number of pole pairs of the motor. 100.0%		
		corresponds to the rated slip frequency △f of		
		motor 2.		
		Setting range: 0.0–200.0%		
	Low-frequency	In space voltage vector control mode, the		
P04.23	oscillation control	motor, especially the large-power motor, may	10	0
	factor of motor 2	experience current oscillation at certain		
	High-frequency	frequencies, which may cause unstable motor		
P04.24	oscillation control	running, or even VFD overcurrent. You can	10	0
	factor of motor 2	adjust the two function codes properly to		
		eliminate such phenomenon.		
		Setting range of P04.23: 0–100		
P04.25	Oscillation control	Setting range of P04.24: 0–100	30.00Hz	0
	threshold of motor 2	Setting range of P04.25: 0.00Hz-P00.03 (Max.		
		output frequency)		
		0: Disable		
		1: Automatic energy-saving run		
P04.26	Energy-saving run	In light-load state, the motor can adjust the	0	0
		output voltage automatically to achieve energy		
		saving.		
		0: Keypad (determined by P04.28)		
		1: Al1		
		2: AI2		
		3: Al3		
P04.27	Voltage setting	4: HDIA	0	0
	channel	5: Multi-step running	U	
		(The setting is determined by related		
		parameters in group P10.)		
		6: PID		
		7: Modbus/Modbus TCP communication		

Function code	Name	Description	Default	Modify
		8: PROFIBUS/CANopen/DeviceNet communication 9: Ethernet communication 10: HDIB 11: EtherCAT/PROFINET/EtherNet IP communication 12: Programmable expansion card 13: Reserved		
P04.28	Voltage set through keypad	The function code is the voltage digital setting when "keypad" is selected as the voltage setting channel. Setting range: 0.0%–100.0%	100.0%	0
P04.29	Voltage increase time	Voltage increase time means the time needed for the VFD to accelerate from min. output	5.0s	0
P04.30	Voltage decrease time	voltage to the max. output frequency. Voltage decrease time means the time needed for the VFD to decelerate from the max. output frequency to min. output voltage. Setting range: 0.0–3600.0s	5.0s	0
P04.31	Max. output voltage	The function codes are used to set the upper	100.0%	0
P04.32	Min. output voltage	vmax Vset Vmin Vmin Vmin Vmin Vmin Vmin Vmin Vmin	0.0%	0
P04.33	Weakening coefficient in constant power zone	1.00-1.30	1.00	0
P04.34	Pull-in current 1 in SM V/F control	When the SM VF control mode is enabled, the function code is used to set the reactive current of the motor when the output frequency is lower	20.0%	0

Function code	Name	Description	Default	Modify
		than the frequency specified by P04.36. Setting range: -100.0%–100.0% (of the motor rated current)		
P04.35	Pull-in current 2 in SM V/F control	When the SM VF control mode is enabled, the function code is used to set the reactive current of the motor when the output frequency is lower than the frequency specified by P04.36. Setting range: -100.0%-100.0% (of the motor rated current)	10.0%	0
P04.36	•	When the SM VF control mode is enabled, the function code is used to set the frequency threshold for the switching between pull-in current 1 and pull-in current 2. Setting range: 0.0 –200.0% (of the motor rated frequency)	20.0%	0
P04.37	Reactive current closed-loop proportional coefficient in SM V/F control	When the SM VF control mode is enabled, the function code is used to set the proportional coefficient of reactive current closed-loop control. Setting range: 0–3000	50	0
P04.38	Reactive current closed-loop integral time in SM V/F control	When the SM VF control mode is enabled, the function code is used to set the integral coefficient of reactive current closed-loop control. Setting range: 0–3000	30	0
P04.39	Reactive current closed-loop output limit in SM VF control	When the SM VF control mode is enabled, the function code is used to set the output limit of the reactive current closed-loop control. A greater value indicates a higher reactive closed-loop compensation voltage and higher output power of the motor. In general, you do not need to modify the function code. Setting range: 0–16000	8000	0
P04.40	Enabling I/F mode for AM 1	0: Invalid 1: Enable Note: The I/F mode is not applicable to conical motors.	0	0

code	Name	Description	Default	Modify
P04.41 :	Forward current setting in I/F mode for AM 1	When I/F control is adopted for AM 1, this parameter is used to set the output current. The value is a percentage in relative to the rated current of the motor. Setting range: 0.0–200.0%	120.0%	0
P04.42	Proportional coefficient in I/F mode for AM 1	When I/F control is adopted for AM 1, this parameter is used to set the proportional coefficient of the output current in closed-loop control. Setting range: 0–5000	350	0
I P04.43 I	Integral coefficient n I/F mode for AM 1	When I/F control is adopted for AM 1, this parameter is used to set the integral coefficient of the output current in closed-loop control. Setting range: 0–5000	150	0
	Starting frequency for switching off I/F mode for AM 1	When I/F control is adopted for AM 1, this parameter is used to set the starting frequency for switching off the output current closed-loop control. When the output frequency is lower than the value of this parameter, the current closed-loop control in the I/F control mode is enabled; and when the output frequency is higher than P04.50, the current closed-loop control in the I/F control mode is disabled. Output Outpu	10.00Hz	0
P04.45	Enabling I/F mode for AM 2	0: Invalid 1: Enable	0	0

Function code	Name	Description	Default	Modify
		Note: The I/F mode is not applicable to		
		conical motors.		
P04.46	Forward current setting in I/F mode for AM 2	When I/F control is adopted for AM 2, this parameter is used to set the output current. The value is a percentage in relative to the rated current of the motor. Setting range: 0.0–200.0%		0
P04.47	Proportional coefficient in I/F mode for AM 2	When I/F control is adopted for AM 2, the function code is used to set the proportional coefficient of output current in closed-loop control. Setting range: 0–5000		0
P04.48	Integral coefficient in I/F mode for AM 2	When I/F control is adopted for AM 2, the function code is used to set the integral coefficient of output current in closed-loop control. Setting range: 0–5000	150	0
P04.49	Starting frequency for switching off I/F mode for AM 2	When I/F control is adopted for AM 2, this parameter is used to set the starting frequency for switching off the output current closed-loop control. When the output frequency is lower than the value of this parameter, the current closed-loop control in the I/F control mode is enabled; and when the output frequency is higher than P04.51, the current closed-loop control in the I/F control mode is disabled. Setting range: 0.00–20.00Hz	10.00Hz	0
P04.50	End frequency for switching off I/F mode for motor 1	P04.44–P00.03	25.00Hz	0
P04.51	End frequency for switching off I/F mode for motor 2	P04.49–P00.03	25.00Hz	0
P04.52	Reverse current setting in I/F mode for AM 1	0.0–200.0%	120.0%	0
P04.53	Reverse current	0.0–200.0%	120.0%	0

Function code	Name	Description	Default	Modify
	setting in I/F mode			
	for AM 2			

Group P05—Input terminal functions

Function	Name	Description	Default	Modify
code	Name	Description	Delault	Wicany
		0x00–0x11		
		Ones place: HDIA input type		
		0: HDIA is high-speed pulse input		
P05.00	HDI input type	1: HDIA is digital input	0x00	0
		Tens place: HDIB input type		
		0: HDIB is high-speed pulse input		
		1: HDIB is digital input		
P05.01	Function of S1	0: No function	1	0
P05.02	Function of S2	1: Run forward (FWD)	2	0
P05.03	Function of S3	2: Run reversely (REV)	7	0
P05.04	Function of S4	3: Three-wire running control (S _{In})	0	0
P05.05	Function of HDIA	4: Jog forward	0	0
P05.06	Function of HDIB	5: Jog reversely 6: Coast to stop 7: Reset faults 8: Pause running 9: External fault input 10: Increase frequency setting (UP) 11: Decrease frequency setting (DOWN) 12: Clear the frequency increase/decrease setting 13: Switch between A setting and B setting 14: Switch between combination setting and A setting 15: Switch between combination setting and B setting 16: Multi-step speed terminal 1 17: Multi-step speed terminal 2 18: Multi-step speed terminal 3 19: Multi-step speed terminal 4 20: Pause multi-step speed running 21: ACC/DEC time selection 1	0	©

Function	Nome	Description.	Default	Madify.
code	Name	Description	Default	woaity
		22: ACC/DEC time selection 2		
		23: Simple PLC stop reset		
		24: Pause simple PLC		
		25: Pause PID control		
		26: Pause wobbling frequency		
		27: Reset wobbling frequency		
		28: Counter reset		
		29: Switch between speed control and torque		
		control		
		30: Disable ACC/DEC		
		31: Trigger the counter		
		32: Input power failure trigger		
		33: Clear the frequency increase/decrease		
		setting temporarily		
		34: DC braking		
		35: Switch from motor 1 to motor 2		
		36: Switch the running command channel to		
		keypad		
		37: Switch the running command channel to		
		terminal		
		38: Switch the running command channel to		
		communication		
		39: Pre-exciting command		
		40: Clear electricity consumption		
		41: Keep electricity consumption		
		42: Switch the setting source of braking torque		
		upper limit to keypad		
		43: Position reference point input (only valid for		
		S2, S3 and S4)		
		44: Reserved		
		45: Local positioning zeroing		
		46–50: Reserved		
		51: Terminal for switching between position		
		control and speed control		
		52: Disable pulse input		
		53: Clear position deviation		
		54: Switch position proportional gains		
		55: Enable cyclic digital positioning		

Function				
code	Name	Description	Default	Modify
		56: Emergency stop		
		57: Motor overtemperature fault input		
		58: Enable rigid tapping		
		59: Switch to V/F control		
		60: Switch to FVC control		
		61: Switch PID polarities		
		62: Switch to SVC1 control (open-loop vector		
		control 1)		
		63: Enable servo		
		64: Limit of forward run (upward)		
		65: Limit of reverse run (downward)		
		66: Clear encoder counting		
		67: Increase pulses		
		68: Enable pulse superposition		
		69: Decrease pulses		
		70: Electronic gear selection		
		71: Switch to the master		
		72: Switch to the slave		
		73: Enable the VFD		
		74: Contactor feedback signal		
		75: Brake feedback signal		
		76: Operating lever zero-point position		
		77: Graded reference terminal 1		
		78: Graded reference terminal 2		
		79: Graded reference terminal 3		
		80: Graded reference terminal 4		
		81: Graded reference terminal 5		
		82: Upward DEC limit position		
		83: Downward DEC limit position		
		84: Light load speed boost signal		
		85: Brake detection		
		86: PTC overtemperature valid signal		
		(supporting only S8 of EC-IO502-00)		
		87: Reserved		
		88: Switch from motor 1 to motor 3		
		89: Anti-snag protection input		
		90: Enable anti-sway		
		91: Switch from master/slave mode to a non		

Function code	Name	Description	Default	Modify
		master/slave mode		
		92: Reserved		
		93: Foot braking		
		94: Top-hitting prevention		
		95: Slewing jog		
P05.07	Reserved	0–65535	0	•
		The function code is used to set the polarity of		
		input terminals.		
	Input terminal	0x00-0x3F		
P05.08	polarity	Corresponding to HDIB, HDIA, S4, S3, S2, and	0x00	0
	polarity	S1 in sequence		
		When a bit is 0, the input terminal is positive.		
		when a bit is 1, the input terminal is negative.		
		The function code is used to specify the		
	Digital input filter	sampling filter time of the S1-S4 and HDIA and		
P05.09	time	HDIB terminals. In strong interference cases,	0.010s	0
	ume	increase the value to avoid maloperation.		
		0.000–1.000s		
		0x00-0x3F (0: Disable. 1: Enable)		
		Bit 0: S1 virtual terminal		
	Virtual terminal	Bit 1: S2 virtual terminal		
P05.10	setting	Bit 2: S3 virtual terminal	0x00	0
	setting	Bit 3: S4 virtual terminal		
		Bit 4: HDIA virtual terminal		
		Bit 5: HDIB virtual terminal		
		The function code is used to set the mode of		
		terminal control.		
	Terminal control mode	0: Two-wire control 1, the enabling consistent		
P05.11		with the direction. This mode is widely used.	0	0
	Houe	The defined FWD/REV terminal command		
		determines the motor rotation direction and		
		stop. The stop method is specified by P01.08.		

Function code	Name	Description	Default	Modify
5532		FWD REV Running command		
		K1 OFF OFF Stop		
		K2 REV ON OFF Forward running Reverse		
		COM		
		1: Two-wire control 2, the enabling separated		
		from the direction. In this mode, FWD is the		
		enabling terminal. The direction depends on the		
		defined REV state.		
		FWD REV Running command		
		K1 OFF OFF Stop		
		REV ON OFF Forward running		
		COM ON Stop		
		running		
		2: Three-wire control 1. This mode defines S _{In}		
		as the enabling terminal, and the running		
		command is generated by FWD, while the		
		direction is controlled by REV. During running, the S_{ln} terminal needs to be closed, and		
		terminal FWD generates a rising edge signal,		
		then the VFD starts to run in the direction set by		
		the state of terminal REV; the VFD needs to be		
		stopped by disconnecting terminal S _{In} . The stop		
		method is specified by P01.08.		
		SB1		
		FWD		
		SB2 S _{In}		
		REV		
		СОМ		
		The direction control is as follows during		
		running:		

Function code	Name		Descr	iption		Default	Modify
		S _{In}	REV		s Present n direction		
		ON	OFF→O	N —	n REV run n FWD run		
		ON	ON→OF		n FWD run n REV run		
		ON→OFF	ON OFF		Stop		
		S _{In} : Three-wi	re control;	FWD: Forwa	ard running;		
		REV: Revers	e running				
		3: Three-wire	e control 2.	This mode	defines S_{ln}		
		as the enal	bling term	inal, and t	he running		
		command is	generated l	by FWD or F	REV, but the		
		direction is o	controlled b	y both FWI	and REV.		
		During runni	ng, the S _{Ir}	terminal n	eeds to be		
		closed, and t	terminal RE	V or FWD	generates a		
		rising edge s	ignal, then	the VFD sta	rts to run in		
		the direction	set by the	state of te	erminal; the		
		VFD needs	to be stop	oped by dis	sconnecting		
		terminal S _{In} .	The stop	method is s	specified by		
		P01.08.					
			SB1				
				VD			
			SB2				
			SB3	n			
			- RE	EV			
				OM			
				J			
					Running		
		S _{In}	FWD	REV	direction		
		ON	OFF→ON	ON	FWD run		
		ON		OFF	FWD run		
		ON	ON	OFF→ON	REV run		
		ON OFF	OFF		REV run		
		ON→OFF	re control:	FWD: Form	Stop		
		S _{In} : Three-wi REV: Revers		I VVD. FUIW	ziu iuilillig;		
		Note: For tw	-	trolled run	ning mode		
		when the F\			-		
						ı	

Function code	Name	Description	Default	Modify
		VFD stops due to a stop command given by		
		another source, the VFD does not run again		
		after the stop command disappears even if		
		the control terminal FWD/REV is still valid.		
		To make the VFD run, you need to trigger		
		FWD/REV again, for example, PLC		
		single-cycle stop, fixed-length stop, and		
		valid STOP/RST stop during terminal		
		control. (See P07.04.)		
P05.12	S1 switch-on delay		0.000s	0
P05.13	S1 switch-off delay		0.000s	0
P05.14	S2 switch-on delay	The function codes specify the delay time	0.000s	0
P05.15	S2 switch-off delay	corresponding to the electrical level changes	0.000s	0
P05.16	S3 switch-on delay	when the programmable input terminals switch	0.000s	0
P05.17	S3 switch-off delay	on or switch off.	0.000s	0
P05.18	S4 switch-on delay	Si electrical level	0.000s	0
P05.19	S4 switch-off delay	Si valid /// valid /// valid invalid	0.000s	0
D05 00	HDIA switch-on	Switch-on Switch-off delay delay	0.000-	0
P05.20	delay	Setting range: 0.000–50.000s	0.000s	O
DOE 04	HDIA switch-off	Note: After a virtual terminal is enabled, the	0.000s	0
P05.21	delay	terminal status can be changed only in	0.0008	O
P05.22	HDIB switch-on	communication mode. The communication	0.000s	0
F05.22	delay	address is 0x200A.	0.0008	O
P05.23	HDIB switch-off		0.000s	0
F05.23	delay		0.0008	O
P05.24	Al1 lower limit	Used to define the relationship between the	0.00V	0
	Corresponding	analog input voltage and its corresponding		
P05.25	setting of Al1 lower	setting. When the analog input voltage exceeds	0.0%	0
	limit	the range from the upper limit to the lower limit,		
P05.26	Al1 upper limit	the upper limit or lower limit is used.	10.00V	0
	Corresponding	When the analog input is current input,		
P05.27	setting of Al1 upper	0mA-20mA current corresponds to 0V-10V	100.0%	0
	limit	voltage.		
P05.28	Al1 input filter time	In different applications, 100.0% of the analog	0.030s	0
P05.29	Al2 lower limit	setting corresponds to different nominal values.	-10.00V	0
P05.30	Corresponding	See the descriptions of each application section	-100.0%	0
1 00.00	setting of Al2 lower	for details.	100.076	

Function code	Name	Description	Default	Modify
	limit	The following figure illustrates the cases of		
P05.31	Al2 middle value 1	several settings:	0.00V	0
	Corresponding	▲ Corresponding setting		
P05.32	setting of AI2	100%	0.0%	0
	middle value 1			
P05.33	Al2 middle value 2	-10V 0 AI	0.00V	0
	Corresponding	10V 20mA		
P05.34	setting of AI2	AI2 AI1	0.0%	0
	middle value 2			
P05.35	Al2 upper limit	V	10.00V	0
	Corresponding	Input filter time: to adjust the sensitivity of		
P05.36	setting of AI2 upper	analog input. Increasing the value properly can	100.0%	0
	limit	enhance analog input anti-interference but may		
		reduce the sensitivity of analog input.		
		Note: Al1 supports the 0-10V/0-20mA input.		
		When Al1 selects the 0-20mA input, the		
		corresponding voltage of 20mA is 10V. Al2		
		supports the -10-+10V input.		
		P05.24 setting range: 0.00V–P05.26		
		P05.25 setting range: -300.0%–300.0%		
		P05.26 setting range: P05.24–10.00V		
		P05.27 setting range: -300.0%–300.0%		
P05.37	Al2 input filter time	P05.28 setting range: 0.000s–10.000s	0.030s	0
		P05.29 setting range: -10.00V–P05.31		
		P05.30 setting range: -300.0%-300.0%		
		Setting range of P05.31: P05.29–P05.33		
		P05.32 setting range: -300.0%-300.0%		
		Setting range of P05.33: P05.31–P05.35		
		P05.34 setting range: -300.0%-300.0%		
		P05.35 setting range: P05.33-10.00V		
		P05.36 setting range: -300.0%-300.0%		
		P05.37 setting range: 0.000s-10.000s		
	LIDIA bists	0: Input set through frequency		
DOE OO	HDIA high-speed	1: Reserved	0	
P05.38	pulse input function	2: Input set through encoder, used together with	0	0
	selection	HDIB		
P05.39	HDIA frequency	0.000kHz-P05.41	0.000kHz	0

Function code	Name	Description	Default	Modify
	lower limit			
P05.40	Corresponding setting of HDIA frequency lower limit	-300.0%–300.0%	0.0%	0
P05.41	HDIA frequency upper limit	P05.39–50.000kHz	50.000 kHz	0
P05.42	Corresponding setting of HDIA upper limit frequency	-300.0%–300.0%	100.0%	0
P05.43	HDIA frequency input filter time	0.000s-10.000s	0.030s	0
P05.44	HDIB high-speed pulse input function selection	O: Input set through frequency 1: Reserved 2: Input set through encoder, used together with HDIA	0	0
P05.45	HDIB frequency lower limit	0.000kHz–P05.47	0.000kHz	0
P05.46	Corresponding setting of HDIB frequency lower limit	-300.0%–300.0%	0.0%	0
P05.47	HDIB frequency upper limit	P05.45–50.000kHz	50.000 kHz	0
P05.48	Corresponding setting of HDIB upper limit frequency	-300.0%–300.0%	100.0%	0
P05.49	HDIB frequency input filter time	0.000s-10.000s	0.030s	0
P05.50	Al1 input signal type	0: Voltage 1: Current Note: You can set the Al1 input signal type through the corresponding function code.	0	0

Group P06—Output terminal functions

Function code	Name	Description	Default	Modify
P06.00	HDO output type	O: Open collector high-speed pulse output. The max. frequency of pulse is 50.00kHz. For details about the related functions, see P06.27–P06.31. Open collector output. For details about the related functions, see P06.02.	0	0
P06.01	Y1 output selection	0: Invalid	0	0
P06.02	HDO output selection	1: Running 2: Running forward	0	0
P06.03	RO1 output selection	3: Running reversely 4: Jogging	1	0
P06.04	RO2 output selection	5: VFD in fault 6: Frequency level detection FDT1 7: Frequency level detection FDT2 8: Frequency reached 9: Running in zero speed 10: Frequency upper limit reached 11: Frequency lower limit reached 11: Frequency lower limit reached 12: Ready for running 13: Pre-exciting 14: Overload pre-alarm 15: Underload pre-alarm 16: Simple PLC stage completed 17: Simple PLC cycle completed 18: Set counting value reached 19: Designated counting value reached 20: External fault is valid 21: Reserved 22: Running time reached 23: Modbus/Modbus TCP communication virtual terminal output (RO2/RO1/HDO/Y1) 24: PROFIBUS/CANopen/DeviceNet communication virtual terminal output (RO2/RO1/HDO/Y1) 25: Ethernet communication virtual terminal output (RO2/RO1/HDO/Y1) 26: DC bus voltage established 27: Z pulse output	0	0

Function		Description	Defects	NA 116 -
code	Name	Description	Default	Modify
		28: Superposing pulses		
		29: STO action		
		30: Positioning completed		
		31: Spindle zeroing completed		
		32: Spindle scale division completed		
		33: In speed limit		
		34: EtherCAT/PROFINET communication		
		virtual terminal output (RO2/RO1/HDO/Y1)		
		35: Modbus/Modbus		
		TCP/PROFIBUS/CANopen		
		/DeviceNet/EtherCAT/Profinet/Ethernet IP		
		communication virtual terminal output		
		(RO4/RO3/Y3/Y2)		
		36: Speed/position control switchover		
		completed		
		37: Any frequency reached		
		38: Non STO fault		
		39–40: Reserved		
		41: C_Y1 from the programmable card (Set		
		P27.00 to 1.)		
		42: C_Y2 from the programmable card (Set		
		P27.00 to 1.)		
		43: C_HDO from the programmable card (Set		
		P27.00 to 1.)		
		44: C_RO1 from the programmable card (Set		
		P27.00 to 1.)		
		45: C_RO2 from the programmable card (Set		
		P27.00 to 1.)		
		46: C_RO3 from the programmable card (Set		
		P27.00 to 1.)		
		47: C_RO4 from the programmable card (Set		
		P27.00 to 1.)		
		48: Contactor output		
		49: Brake output		
		50: Ready to release the brake		
		51: Ready to close the brake		
		52: The upward limit position is reached.		
		53: The downward limit position is reached.		
		54: Low voltage protection		

Function code	Name	Description	Default	Modify
code		55: Overload protection 56: Brake detection reminding 57: Brake failure alarm 58: Input phase loss alarm 59: Loose rope status (Loose rope fault in REV lowering) 60: In motor 1 state 61: In motor 2 state 62: In motor 3 state 63: PT100 temperature alarm 64: PT1000 temperature alarm 65: Boosting the speed with light load 66: Frequency decrease with voltage 67: Weighing alarm		
		68: AI detected temperature alarm 69: Reserved 70: Stopped or running in zero speed 71: Input power failure		
P06.05	Output terminal polarity selection	The function code is used to set the polarity of output terminals. When a bit is 0, the output terminal is positive. When a bit is 1, the output terminal is negative. BIT3 BIT2 BIT1 BIT0 RO2 RO1 HDO Y1 Setting range: 0x0-0xF	0x0	0
P06.06	Y1 switch-on delay		0.000s	0
P06.07	Y1 switch-off delay	The function codes specify the delay time	0.000s	0
P06.08	HDO switch-on delay	corresponding to the electrical level changes when the programmable output terminals	0.000s	0
P06.09	HDO switch-off delay	switch on or switch off.	0.000s	0
P06.10	RO1 switch-on delay	Y electric level invalid ///, Valid ////////////////////////////////////	0.000s	0
P06.11	RO1 switch-off delay	Setting range: 0.000–50.000s	0.000s	0
P06.12	RO2 switch-on delay	Note: P06.08 and P06.09 are valid only when P06.00=1.	0.000s	0
P06.13	RO2 switch-off delay	F 00.00=1.	0.000s	0

Function code	Name	Description	Default	Modify
D06 14	AO1 output	0: Running frequency (0-Max. output	0	
P06.14	selection	frequency)	U	0
P06.16	HDO high-speed pulse output	frequency) 1: Set frequency (0-Max. output frequency) 2: Ramp reference frequency (0-Max. output frequency) 3: Rotational speed (0-Speed corresponding to max. output frequency) 4: Output (0-Twice the inverter unit rated current) 5: Output current (0-Twice the motor rated current) 6: Output (0-1.5 times the inverter unit rated voltage) 7: Output power (0-Twice the motor rated power) 8: Set torque (0-Twice the motor rated torque) 9: Output torque (Absolute value, 0-±Twice the motor rated torque) 10: Al1 input (0-10V/0-20mA) 11: Al2 input (0-10V) 12: Al3 input (0-10V/0-20mA) 13: HDIA input (0.00-50.00kHz) 14: Value 1 set through Modbus/Modbus TCP communication (0-1000) 15: Value 2 set through Modbus/Modbus TCP communication (0-1000) 16: Value 1 set through PROFIBUS/CANopen/DeviceNet communication (0-1000) 17: Value 2 set through PROFIBUS/CANopen/DeviceNet communication (0-1000) 18: Value 1 set through Ethernet communication (0-1000) 19: Value 2 set through Ethernet communication (0-1000) 20: HDIB input (0.00-50.00kHz) 21: Value 1 set through	0	0

Function code	Name	Description	Default	Modify
		EtherCAT/PROFINET/EtherNet IP		
		communication (0–1000)		
		22: Torque current (bipolar, 0-Triple the motor		
		rated current)		
		23: Exciting current (bipolar, 0-Triple the motor		
		rated current)		
		24: Set frequency (bipolar, 0-Max. output		
		frequency)		
		25: Ramp reference frequency (bipolar, 0–Max.		
		output frequency)		
		26: Rotational speed (bipolar, 0-Speed		
		corresponding to max. output frequency)		
		27: Value 2 set through		
		EtherCAT/PROFINET/EtherNet IP		
		communication (0-1000)		
		28: C_AO1 from the programmable card (Set		
		P27.00 to 1.) (0–1000)		
		29: C_AO2 from the programmable card (Set		
		P27.00 to 1.) (0–1000)		
		30: Rotational speed (0–Twice the motor rated		
		synchronous speed)		
		31: Output torque (Actual value, 0–Twice the		
		motor rated torque)		
		32: AIAO detected temperature output		
		33–34: Reserved		
		35: Hook rope length (0-Max. rope length)		
		36–63: Reserved		
P06.17	AO1 output lower		0.0%	0
	limit	The function codes define the relationship	0.070	
	AO1 output	between the output value and analog output.		
P06.18	corresponding to	When the output value exceeds the allowed	0.00V	0
	lower limit	range, the output uses the lower limit or upper		
P06.19	AO1 output upper	limit.	100.0%	0
	limit	When the analog output is current output, 1mA		
	AO1 output	equals 0.5V.		
P06.20	corresponding to	In different cases, the corresponding analog	10.00V	0
	upper limit	output of 100% of the output value is different.		
P06.21	AO1 output filter		0.000s	0

Function	Name	Description	Default	Modify
code	time	▲ 10V (20mA)		
	ume	AO 10V (20mA)		
		0.0% 100.0%		
		P06.17 setting range: -300.0%–P06.19		
		P06.18 setting range: 0.00V–10.00V		
		P06.19 setting range: P06.17–300.0%		
		P06.20 setting range: 0.00V–10.00V		
		P06.21 setting range: 0.000s–10.000s		
P06.23	•	Applicable to P92.22=4 (using PTC for	4.000mA	0
	setting	temperature measuring). Refer to section 5.7.3		
P06.24	PTC resistance	Using PTC. Set P06.24 and P06.25 according	750Ω	0
	alarm threshold PTC resistance	to the selected PTC model resistance and temperature curve.		
P06.25	alarm recovery	When P06.26 is greater than P06.24, the VFD	150Ω	0
F00.25	threshold	reports the alarm A-Aot and runs normally.		
	tillesiloid	When P06.26 is less than P06.25, the alarm		
		A-Aot is cleared.		
	Actual PTC	Setting range of P06.23: 0.00–20.000mA		
P06.26	resistance	Setting range of P06.24: 0–60000Ω	0Ω	•
		Setting range of P06.25: 0–60000Ω		
		Setting range of P06.26: 0–60000Ω		
P06.27	HDO output lower	-300.0%–P06.29	0.00%	0
	HDO output			
P06.28	corresponding to	0.00–50.00kHz	0.00kHz	0
. 55.25	lower limit	500 500001112	0.002	
Doc oc	HDO output upper	P00 07 000 00/	400.007	
P06.29	limit	P06.27–300.0%	100.0%	0
	HDO output			
P06.30	corresponding to	0.00–50.00kHz	50.00kHz	0
	upper limit			
P06.31	HDO output filter time	0.000s-10.000s	0.000s	Ο
P06.33	Detection value for	0Hz-P00.03	1.00Hz	0

Function code	Name	Description	Default	Modify
	frequency being reached			
P06.34	Frequency reaching detection time	0–3600.0s	0.5s	0

Group P07—Human-machine interface

Function code	Name	Description	Default	Modify
P07.00	User password	0–65535 When you set the function code to a non-zero number, password protection is enabled. If you set the function code to 00000, the previous user password is cleared and password protection is disabled. After the user password is set and takes effect, you cannot enter the parameter menu if you enter an incorrect password. Please remember your password and save it in a secure place. After you exit the function code editing interface, the password protection function is enabled within 1 minute. If password protection is enabled, "0.0.0.0.0" is displayed when you press the PRG/ESC key again to enter the function code editing interface. You need to enter the correct user password to enter the interface. Note: Restoring the default values may delete the user password. Exercise caution when using this function.	0	0
P07.01	Parameter copy	Range: 0–4 0: No operation 1: Upload parameters to the keypad 2: Download all parameters (including motor parameters) 3: Download non-motor parameters 4: Download motor parameters	0	0
P07.02	Function of QUICK/JOG	Range: 0x00–0x27 Ones place: Function of QUICK/JOG	0x01	0

Function code	Name	Description	Default	Modify
code		0: No function 1: Jog 2: Reserved 3: Switch between forward and reverse rotating 4: Clear the UP/DOWN setting 5: Coast to stop 6: Switch command channels in sequence 7: Quick commissioning mode (based on		
		non-factory parameter settings) Tens place: Reserved		
P07.03	Sequence of switching running-command channels by pressing QUICK	When P07.02=6, set the sequence of switching running-command channels by pressing this key. 0: Keypad→Terminal→Communication 1: Keypad←→Terminal 2: Keypad←→Communication 3: Terminal←→Communication	0	0
P07.04	Stop function validity of STOP/RST	Used to specify the stop function validity of STOP/RST. For fault reset, STOP/RST is valid in any conditions. 0: Valid only for keypad control 1: Valid both for keypad and terminal control 2: Valid both for keypad and communication control 3: Valid for all control modes	0	0
P07.05	Selection 1 of parameters displayed in running state	0x0000-0xFFFF	0x03FF	
P07.06	Selection 2 of parameters displayed in running state	0x0000-0xFFFF	0x0000	
P07.07	Selection of parameters displayed in stopped state	0x0000-0xFFFF	0x00FF	
P07.08	Frequency display	0.01–10.00	1.00	0

Function	Name	Description	Default	Modify
code	Hamo	2000 i piloti	Dordan	incuity
	coefficient	Display frequency = Running frequency * P07.08		
P07.09	Rotational speed display coefficient	0.1–999.9% Mechanical rotation speed = 120 × (Displayed running frequency) × P07.09/(Number of motor pole pairs)	100.0%	0
P07.10	Linear speed display coefficient	0.1-999.9% Linear speed = (Mechanical rotation speed) × P07.10	1.0%	0
P07.11	Rectifier bridge temperature	-20.0–120.0°C	/	•
P07.12	Inverter module temperature	-20.0–120.0°C	/	•
P07.13	Control board software version	1.00–655.35	/	•
P07.14	Local accumulative running time	0–65535h	/	•
P07.15	VFD electricity consumption high bits	Used to display the electricity consumption of the VFD VFD electricity consumption = P07.15*1000 +	/	•
P07.16	VFD electricity consumption low bits	P07.16 Setting range of P07.15: 0–65535 kWh (*1000) Setting range of P07.16: 0.0–999.9kWh	/	•
P07.17	VFD model	0x0000–0xFFF1 Ones place: G/P type 0: G type 1: P type Tens place: Chip type 0: DSP 1: ARM Hundreds place–thousands place: Reserved	0x0000	•
P07.18	VFD rated power	0.4–3000.0kW	/	•
P07.19	VFD rated voltage	50–1200V	/	•
P07.20	VFD rated current	0.1–6000.0A	/	•
P07.21	Factory bar code 1	0x0000-0xFFFF	/	•
P07.22	Factory bar code 2	0x0000-0xFFFF	/	•
P07.23	Factory bar code 3	0x0000-0xFFFF	/	•

Function code	Name	Description	Default	Modify
P07.24	Factory bar code 4	0x0000-0xFFFF	/	•
P07.25	Factory bar code 3	0x0000-0xFFFF	/	•
P07.26	Factory bar code 4	0x0000-0xFFFF	/	•
1 07.20	Type of present	0: No fault	/	
P07.27	fault	1: Inverter unit U-phase protection (OUt1)	,	•
P07.28	Last fault type	2: Inverter unit V-phase protection (OUt2)	/	•
P07.29	2nd-last fault type	3: Inverter unit W-phase protection (OUt3)	/	
P07.29	• •	4: Overcurrent during ACC (OC1)	/	
	3rd-last fault type	5: Overcurrent during deceleration (OC2)		
P07.31	4th-last fault type	6: Overcurrent during constant speed running	/	•
P07.32	5th-last fault type	6: Overcurrent during constant speed running (OC3) 7: Overvoltage during ACC (OV1) 8: Overvoltage during DEC (OV2) 9: Overvoltage during constant speed running (OV3) 10: Bus undervoltage fault (UV) 11: Motor overload (OL1) 12: VFD overload (OL2) 13: Phase loss on input side (SPI) 14: Phase loss on output side (SPO) 15: Rectifier module overheating (OH1) 16: Inverter module overheat (OH2) 17: External fault (EF) 18: RS485 communication fault (CE) 19: Current detection fault (ItE) 20: Motor autotuning fault (ItE) 21: EEPROM operation error (EEP) 22: PID feedback offline fault (PIDE) 23: Braking unit fault (bCE) 24: Running time reached (END) 25: Electronic overload (OL3) 26: Keypad communication error (PCE) 27: Parameter upload error (UPE) 28: Parameter download error (DNE) 29: PROFIBUS communication fault (E_dP) 30: Ethernet communication fault (E-NET)	/	•
		31: CANopen communication fault (E-CAN) 32: To-ground short-circuit fault 1 (ETH1) 33: To-ground short-circuit fault 2 (ETH2)		

Function	Name	Description	Default	Modify
code		24.0 11.11.11.11.11.11.11		
		34: Speed deviation fault (dEu)		
		35: Mal-adjustment fault (STo)		
		36: Underload fault (LL)		
		37: Encoder disconnection fault (ENC1O)		
		38: Encoder direction reversal fault (ENC1D)		
		39: Encoder Z-pulse disconnection fault		
		(ENC1Z)		
		40: Safe torque off (STO)		
		41: Exception to safety circuit of channel 1		
		(STL1)		
		42: Exception to safety circuit of channel 2 (STL2)		
		43: Exception to both channels 1 and 2 (STL3)		
		44: Safety code FLASH CRC fault (CrCE)		
		45: Programmable card customized fault 1		
		(P-E1)		
		46: Programmable card customized fault 2		
		(P-E2)		
		47: Programmable card customized fault 3		
		(P-E3)		
		48: Programmable card customized fault 4		
		(P-E4)		
		49: Programmable card customized fault 5		
		(P-E5)		
		50: Programmable card customized fault 6		
		(P-E6)		
		51: Programmable card customized fault 7		
		(P-E7)		
		52: Programmable card customized fault 8		
		(P-E8)		
		53: Programmable card customized fault 9		
		(P-E9)		
		54: Programmable card customized fault 10		
		(P-E10)		
		55: Duplicate expansion card type (E-Err)		
		56: Encoder UVW lost (ENCUV)		
		57: PROFINET communication fault (E_PN)		
		58: CAN communication fault (SECAN)		
		59: Motor overtemperature fault (OT)		

Function				
code	Name	Description	Default	Modify
		60: Failure to identify the card at slot 1 (F1-Er)		
		61: Failure to identify the card at slot 2 (F2-Er)		
		62: Failure to identify the card at slot 3 (F3-Er)		
		63: Communication timeout of the card at slot 1		
		(C1-Er)		
		64: Communication timeout of the card at slot 2		
		(C2-Er)		
		65: Communication timeout of the card at slot 3		
		(C3-Er)		
		66: EtherCat communication fault (E-CAT)		
		67: Bacnet communication fault (E-BAC)		
		68: DeviceNet communication fault (E-DEV)		
		69: CAN slave fault in master/slave		
		synchronization (S-Err)		
		70: VFD disabled (dIS)		
		71: Contactor feedback fault (tbE)		
		72: Brake feedback fault (FAE)		
		73: Torque verification fault (tPF)		
		74: Operating lever zero-position fault (STC)		
		75: Low speed running protection fault (LSP)		
		76: Terminal command exception (tCE)		
		77: Power-on terminal command exception		
		(POE)		
		78: Loose rope protection fault (SLE)		
		79: Brake failure (bE)		
		80: Master/slave position synchronization fault		
		(ELS)		
		81: Analog speed reference deviation fault		
		(AdE)		
		82: PT100 overtemperature (OtE1)		
		83: PT1000 overtemperature fault (OtE2)		
		84: Set frequency fault (SFE)		
		85: Current imbalance fault (Cuu)		
		86: PTC overtemperature fault (PtcE) 87: Overload fault (E-OvL)		
		88: Overspeed fault (E-OS)		
		89: Stalling fault (E-dS)		
		90–91: Reserved		
		92: Al1 disconnection fault (E-Al1)		
		32. ATT GISCOTTIBULIOTT IAUR (E-ATT)		

Function code	Name	Description	Default	Modify
code		93: Al2 disconnection fault (E-Al2) 94: Al3 disconnection fault (E-Al3) 95: EtherNet IP communication timeout fault (E-EIP) 96: No upgrade bootload (E-PAO) 97: Second channel encoder disconnection (Enc2o) 98: SSI position deviation fault (ENCPI) 99: SSI position upward limit (E-PUP)		
	Dunning fragues a	100: SSI position downward limit (E-Pdn) 101: Fault of instant stop at load change (E-CL)		
P07.33	Running frequency at present fault	0.00Hz-P00.03	0.00Hz	•
P07.34	Ramp reference frequency at present fault	0.00Hz-P00.03	0.00Hz	•
P07.35	Output current at present fault	0–1200V	0V	•
P07.36	Output current at present fault	0.0–6300.0A	0.0A	•
P07.37	Bus voltage at present fault	0.0–2000.0V	0.0V	•
P07.38	Temperature at present fault	-20.0–120.0°C	0.0°C	•
P07.39	Input terminal status at present fault	0x0000–0xFFFF	0x0000	•
P07.40	Output terminal status at present fault	0x0000–0xFFFF	0x0000	•
P07.41	Running frequency at last fault	0.00Hz-P00.03	0.00Hz	•
P07.42	Ramp reference frequency at last fault	0.00Hz–P00.03	0.00Hz	•
P07.43	Output voltage at last fault	0–1200V	0V	•
P07.44	Output current at last fault	0.0–6300.0A	0.0A	•

Function code	Name	Description	Default	Modify
P07.45	Bus voltage at last fault	0.0–2000.0V	0.0V	•
P07.46	Temperature at last fault	-20.0–120.0°C	0.0°C	•
P07.47	Input terminal status at last fault	0x0000-0xFFFF	0x0000	•
P07.48	Output terminal status at last fault	0x0000-0xFFFF	0x0000	•
P07.49	Running frequency at 2nd-last fault	0.00Hz-P00.03	0.00Hz	•
P07.50	Ramp reference frequency at 2nd-last fault	0.00Hz–P00.03	0.00Hz	•
P07.51	Output voltage at 2nd-last fault	0–1200V	0V	•
P07.52	Output current at 2nd-last fault	0.0–6300.0A	0.0A	•
P07.53	Bus voltage at 2nd-last fault	0.0–2000.0V	0.0V	•
P07.54	Temperature at 2nd-last fault	-20.0–120.0°C	0.0°C	•
P07.55	Input terminal state at 2nd-last fault	0x0000-0xFFFF	0x0000	•
P07.56	Output terminal state at 2nd-last fault	0x0000-0xFFFF	0x0000	•

Group P08—Enhanced functions

Function code	Name	Description	Default	Modify
P08.00	ACC time 2		Model	0
1 00.00		For details, see P00.11 and P00.12.	depended	
P08.01	DEC time 2	The VFD has four groups of ACC/DEC time,	Model	0
P08.01	DEC time 2	which can be selected by P05. The factory	depended	
P08.02	ACC time 3	default ACC/DEC time of the VFD is the first	Model	0
P08.02	ACC time 3	group.	depended	0
D00.00	DEC time 2	Setting range: 0.0-3600.0s	Model	0
P08.03	DEC time 3		depended	

Function code	Name	Description	Default	Modify
P08.04	ACC time 4		Model depended	0
P08.05	DEC time 4		Model depended	0
P08.06	Running frequency of jog	The function code is used to define the reference frequency during jogging. Setting range: 0.00Hz–P00.03 (Max. output frequency)	5.00Hz	0
P08.07	ACC time for jogging	ACC time for jogging means the time needed for the VFD to accelerate from 0Hz to the max.	Model depended	0
P08.08	DEC time for jogging	output frequency (P00.03). DEC time for jogging means the time needed for the VFD to decelerate from the max. output frequency (P00.03) to 0Hz. Setting range: 0.0–3600.0s	Model depended	0
P08.09	Jump frequency 1	When the set frequency is within the range of	0.00Hz	0
P08.10	Jump frequency amplitude 1	jump frequency, the VFD runs at the boundary of jump frequency.	0.00Hz	0
P08.11	Jump frequency 2	The VFD can avoid mechanical resonance	0.00Hz	0
P08.12	Jump frequency amplitude 2	points by setting jump frequencies. The VFD supports the setting of three jump frequencies.	0.00Hz	0
P08.13	Jump frequency 3	If the jump frequency points are set to 0, this	0.00Hz	0
P08.14	Jump frequency amplitude 3	function is invalid. Jump frequency 3 Jump frequency 2 Jump frequency 2 Jump frequency 2 Jump frequency 1 Jump frequency 2 Jump frequency 1 Jump fre	0.00Hz	0
P08.15	Amplitude of wobbling frequency	0.0–100.0% (of the set frequency)	0.0%	0
P08.16	Amplitude of sudden jump frequency	0.0–50.0% (of the amplitude of wobbling frequency)	0.0%	0

Function code	Name	Description	Default	Modify
P08.17	Rise time of wobbling frequency	0.1–3600.0s	5.0s	0
P08.18	Fall time of wobbling frequency	0.1–3600.0s	5.0s	0
P08.19	Switching frequency of ACC/DEC time	0.00–P00.03 (Max. output frequency) 0.00Hz: No switchover. If the running frequency is greater than P08.19, switch to ACC/DEC time 2.	0.00Hz	0
P08.20	Frequency threshold of the start of droop control	0.00–50.00Hz	2.00Hz	0
P08.21	Reference frequency of ACC/DEC time	O: Max. output frequency 1: Set frequency 2: 100Hz Note: Valid only for straight-line ACC/DEC	0	0
P08.22		Based on torque current Based on output power	0	0
P08.23	Number of decimal places of frequency		0	0
P08.24	Number of decimal places of linear speed	0: None 1: One 2: Two 3: Three	0	0
P08.25	Set counting value	P08.26–65535	0	0
P08.26	Designated counting value	0–P08.25	0	0
P08.27	Set running time	0–65535min	0min	0
P08.28	Auto fault reset count	Auto fault reset count: When the VFD uses automatic fault reset, it is used to set the	0	0
P08.29	Auto fault reset interval	number of automatic fault reset times. When the number of continuous reset times exceeds the value, the VFD reports a fault and stops. Auto fault reset interval: Time interval from when a fault occurred to when automatic fault reset takes effect. After VFD starts, If no fault occurred within 600s after the VFD starts, the number of automatic fault reset times is cleared.	1.0s	0

Function	Name	Description	Default	Modify
code		Setting range of P08.28: 0–10		
		Setting range of P08.29: 0.1–3600.0s		
P08.30	Frequency decrease ratio in droop control	The output frequency of the VFD changes as the load changes. The function code is mainly used to balance the power when several motors drive a same load. Setting range: 0.00–50.00Hz	0.00Hz	0
P08.31	Channel switching for motor 1 to motor 3	0x00–0x15 Ones place: Switchover channel 0: Switch over through terminals 1: Modbus/Modbus TCP communication 2: PROFIBUS/CANopen/DeviceNet communication 3: Ethernet communication 4: EtherCAT/PROFINET/EtherNet IP communication 5: Reserved Tens place: indicates whether to enable switchover during running 0: Disable 1: Enable	0x00	0
P08.32	FDT1 electrical level detection value	When the output frequency exceeds the corresponding frequency of FDT electrical level, the multifunction digital output terminal	50.00Hz	0
P08.33	FDT1 lagging detection value	continuously outputs the signal of "Frequency level detection FDT". The signal is invalid only when the output frequency decreases to a	5.0%	0
P08.34	FDT2 electrical level detection value	value lower than the frequency corresponding to (FDT electrical level—FDT lagging detection value).	50.00Hz	0
P08.35	FDT2 lagging detection value	FDT level FDT lag Y1, RO1, RO2 Setting range of P08.32: 0.00Hz–P00.03 (Max. output frequency)	5.0%	0

Function code	Name	Description	Default	Modify
		Setting range of P08.33: 0.0–100.0% (FDT1 electrical level) Setting range of P08.34: 0.00Hz–P00.03 (Max. output frequency) Setting range of P08.35: 0.0–100.0% (FDT2 electrical level)		
P08.36	Detection value for frequency being reached	When the output frequency is within the detection range, the multifunction digital output terminal outputs the signal of "Frequency reached". Set Trime to	0.00Hz	0
P08.37	Enabling energy-consumptio n braking	0x00–0x11 Ones place: 0: Disable 1: Enable Tens place: 0: Disable braking short-circuit protection 1: Enable braking short-circuit protection Note: For the 380V models, the default value is 0x11 for 11kW–110kW, 0x01 for <7.5kW, and 0x00 for >110kW.	Model depended	0
P08.38	Energy-consumptio n braking threshold voltage	The function code is used to set the starting bus voltage of energy consumption braking. Adjust this value properly to achieve effective braking for the load. The default value varies depending on the voltage class. Setting range: 200.0–2000.0V	For 220V: 380.0V For 380V: 700.0V For 660V: 1120.0V	0
P08.39	Running mode of	0: The fan runs with the VFD; the fan stops 1	0	0

Function				
code	Name	Description	Default	Modify
	cooling fan	minute after the VFD stops.		
	-	1: Permanent running after power-on		
		2. Run mode 2. In addition to the running		
		requirements in run mode 0, run mode 2 has		
		the feature that the fan still runs even when the		
		ramp frequency is greater than 0.		
		3: Speed regulation mode. The fan rotation		
		speed is automatically regulated based on the		
		temperature and output current (this requires		
		hardware support).		
		0x0000–0x1121		
		Ones place: PWM mode selection		
		0: PWM mode 1, 3PH modulation and 2PH		
		modulation		
		1: PWM mode 2, 3PH modulation		
		Tens place: PWM low-speed carrier frequency		
		limit		
		0: Low-speed carrier frequency limit mode 1		
P08.40	PWM selection	1: Low-speed carrier frequency limit mode 2	0x1101	0
		2: No limit on low-speed carrier frequency		
		Hundreds place: Deadzone compensation		
		method		
		0: Compensation method 1		
		1: Compensation method 2		
		Thousands place: PWM loading mode selection		
		0: Interruptive loading		
		1: Normal loading		
		0x00-0x1111		
		Ones place:		
		0: Overmoulation is invalid		
		1: Enable		
		Tens place		
P08.41	Overmodulation	0: Mild overmodulation	0x1001	0
	selection	1: Deepened overmodulation		
		Hundreds: Carrier frequency limit		
		0: Yes		
		1: No		
		Thousands place: Output voltage		
		compensation		

Function code	Name	Description	Default	Modify
		0: No 1: Yes		
P08.42	LED keypad digital control setting	Ox000–0x1223 Ones place: Frequency adjustment selection 0: Both the // / key and digital potentiometer can be used for the control. 1: Only the // key can be used for the control. 2: Only the digital potentiometer can be used for the control. 3: Both the // key and digital potentiometer can be used for the control. 3: Both the // key and digital potentiometer can be used for the control. Tens place: Frequency control selection 0: Valid only when P00.06=0 or P00.07=0 1: Valid for all frequency setting methods 2: Invalid for multi-step speed running when multi-step speed running has the priority LED hundreds place: Action selection for stop 0: Setting is valid. 1: Valid during running, cleared after a stop command is received LED thousands place: Indicates whether to enable the integral function through the // key and digital potentiometer. 0: Enable the integral function 1: Disable the integral function	0x0003	0
P08.43	LED keypad digital potentiometer integral rate	0.01–10.00s	0.10s	0
P08.44	UP/DOWN terminal control setting	0x000–0x221 Ones place: Frequency setting selection 0: The setting made through UP/DOWN is valid. 1: The setting made through UP/DOWN is invalid. Ones place: Frequency control selection 0: Valid only when P00.06 = 0 or P00.07 = 0	0x000	0

Function code	Name	Description	Default	Modify
		1: Valid for all frequency setting methods 2: Invalid for multi-step speed running when multi-step speed running has the priority Hundreds place: Action selection for stop 0: Setting is valid. 1: Valid during running, cleared after stop 2: Valid during running, cleared after a stop command is received		
P08.45	Frequency increment integral rate of the UP terminal	0.01–50.00Hz/s	0.50Hz/s	0
P08.46	Frequency integral rate of the DOWN terminal	0.01–50.00Hz/s	0.50Hz/s	0
P08.47	Action selection at power-off during frequency setting	0x000–0x111 Ones place: Action selection at power-off during frequency adjusting through digitals. 0: Save the setting at power-off. 1: Clear the setting at power-off. Action selection at power-off during frequency adjusting through Modbus communication 0: Save the setting at power-off. 1: Clear the setting at power-off. Hundreds place: Action selection at power-off during frequency adjusting through DP communication methods 0: Save the setting at power-off. 1: Clear the setting at power-off.	0x000	0
P08.48	Initial electricity consumption high bit	Used to set the initial electricity consumption. Initial electricity consumption = P08.48 × 1000 + P08.49	0kWh	0
P08.49	Initial electricity consumption low bit	Setting range of P08.48: 0–59999kWh (k) Setting range of P08.49: 0.0–999.9kWh	0.0kWh	0
P08.50	Magnetic flux braking	Used to enable magnetic flux braking. 0: Invalid 100–150: A greater coefficient indicates greater braking strength.	0	0

Function code	Name	Description	Default	Modify
		The VFD can quickly slow down the motor by increasing the magnetic flux. The energy generated by the motor during braking can be transformed into heat energy by increasing the magnetic flux. The VFD monitors the state of the motor continuously even during the magnetic flux period. Magnetic flux braking can be used for motor stop, as well as for motor rotation speed change. The other advantages include: Braking is performed instantly after the stop command is given. The braking can be started without waiting for magnetic flux weakening. This will have better motor cooling effect. During the magnetic flux braking period, the stator current of the motor increases while the rotor current does not, and the cooling of the stator is much more effective than that of the		
P08.51	VFD input power factor	rotor. This function code is used to adjust the current display value on the AC input side. 0.00–1.00	0.56	0
P08.52	STO lock selection	O: Lock upon STO alarm Lock upon STO alarm: indicates resetting is required after state restoration if STO occurs. 1: No lock on STO alarm No lock on STO alarm indicates STO alarm disappears automatically after state restoration if STO occurs.	0	0
P08.53	Upper limit frequency bias value in torque control	0.00Hz–P00.03 (Max. output frequency) Note: Valid only for torque control.	0.00Hz	0
P08.54	Upper limit frequency ACC/DEC selection in torque control	0: No limit on acceleration or deceleration 1: ACC/DEC time 1 2: ACC/DEC time 2 3: ACC/DEC time 3 4: ACC/DEC time 4	0	0

Function	Name	Description	Default	Modify
code		2000p.11011	20.00.0	
		0: Disable		
		1: Enable		
		Note: Automatic carrier frequency reduction		
		indicates that the VFD automatically		
	Enabling auto	reduces the carrier frequency when		
P08.55	carrier frequency	detecting the heat sink temperature exceeds	0	0
	reduction	the rated temperature. When the		
		temperature decreases to a specified value,		
		the carrier frequency restores to the setting.		
		This function can reduce the VFD overheat		
		alarm reporting chances.		
D00 50	Min. carrier	1.0–15.0kHz	Model	•
P08.56	frequency		depended	
	Temperature point	40.0–85.0°C	70.0°C	0
	of auto carrier			
P08.57	frequency			
	reduction			
	Interval of carrier	0–30min	10min	0
P08.58	frequency	o domin	10111111	0
F00.56	. ,			
	reduction			
P08.59	Al1 disconnection	0–100%	0%	0
	detection threshold			
P08.60	Al2 disconnection	0–100%	0%	0
. 00.00	detection threshold	- 100%		
P08.61	Al3 disconnection	0–100%	0%	0
F06.01	detection threshold	0-100%	076)
D00.00	Output current filter	0.000 40.000-	0.000-)
P08.62	time	0.000–10.000s	0.000s	0
	Output torque filter		_	
P08.63	times	0–8	8	0
	24V power supply			
P08.64	card power-on	0.000-5.000s	0.000s	0
	delay			
	Current filtering			
P08.65	times in coordinate	0–3	0	0
	change			
	Motor parameter	0: No operation		
P08.66	autotuning	1: Power-on dynamic autotuning 1	0	0
	adiotalinig	oo. o dynamio autotaming i		

Function code	Name	Description	Default	Modify
	selection during	2: Power-on static autotuning 1 (Complete		
	power-on	autotuning)		
		3: Power-on static autotuning 2 (Partial		
		autotuning)		
		4: Power-on dynamic autotuning 2 (valid only		
		for AMs)		
		5: Power-on partial parameter static autotuning		
		2 (valid only for AMs)		
		Note: The function is valid only when the		
		hundreds place of P11.26 is 1.		
		Exercise caution before using this function.		
		Otherwise, serious result may follow.		

Group P09—PID control

Function code	Name	Description	Default	Modify
P09.00	PID reference source selection	When frequency command selection (P00.06, P00. 07) is 7, or voltage setting channel (P04.27) is 6, the running mode of VFD is process PID control. The function code determines the target given channel during the PID process. 0: Setting through P09.01 1: Al1 2: Al2 3: Al3 4: High-speed pulse HDIA 5: Multi-step running 6: Modbus/Modbus TCP communication 7: PROFIBUS/CANopen/DeviceNet communication 8: Ethernet communication 9: High-speed pulse HDIB 10: EtherCAT/PROFINET/EtherNet IP communication 11: Programmable expansion card 12: Reserved The set target of process PID is a relative value, for which 100% equals 100% of the feedback	0	0

Function code	Name	Description	Default	Modify
		signal of the controlled system. The system always performs calculation by using a relative value (0–100.0%).		
P09.01	PID digital setting	The function code is mandatory when P09.00=0. The base value of The function code is the feedback of the system. Setting range: -100.0%—100.0%	0.0%	0
P09.02	PID feedback source selection	The function code is used to select the PID feedback channel. 0: Al1 1: Al2 2: Al3 3: High-speed pulse HDIA 4: Modbus/MoudbusTCP communication 5: PROFIBUS/CANopen/DeviceNet communication 6: Ethernet communication 7: High-speed pulse HDIB 8: EtherCAT/PROFINET/EtherNet IP communication 9: Programmable expansion card 10: Max(Al1,Al2) 11: Reserved Note: The reference channel and feedback channel cannot be duplicate. Otherwise effective PID control cannot be achieved.	0	0
P09.03	PID output characteristics selection	O: PID output is positive. When the feedback signal is greater than the PID reference value, the output frequency of the VFD will decrease to balance the PID. 1: PID output is negative. When the feedback signal is greater than the PID reference value, the output frequency of the VFD will increase to balance the PID.	0	0
P09.04	Proportional gain (Kp)	The function is applied to the proportional gain P of PID input. P determines the strength of the whole PID adjuster. The value 100 indicates that when the	1.80	0

Function	Name	Description	Default	Modify
code				
		difference between the PID feedback value and		
		given value is 100%, the range within which the		
		PID regulator can regulate the output frequency		
		command is the max. frequency (ignoring		
		integral function and differential function).		
		Setting range: 0.00–100.00		
		Used to determine the speed of the integral		
		adjustment on the deviation of PID feedback		
		and reference from the PID regulator.		0.90s O
		When the deviation of PID feedback and		
		reference is 100%, the integral adjuster works		
P09.05	Integral time (Ti)	continuously during the time (ignoring	0.90s	0
		proportional and differential function) to achieve		
		the max. output frequency (P00.03) or the max.		
		voltage (P04.31). Shorter integral time indicates		
		stronger adjustment.		
		Setting range: 0.00–10.00s		
		Used to determine the strength of the change		
		ratio adjustment on the deviation of PID		
		feedback and reference from the PID regulator.		
		If the PID feedback changes 100% during the		
D00.00	Differential time	time, the adjustment of the differential regulator	0.00	
P09.06	(Td)	(ignoring proportional and integral function) is	0.008	O
		the max. output frequency (P00.03) or the max.		
		voltage (P04.31). Longer differential time		
		indicates stronger adjustment.		
		Setting range: 0.00–10.00s		
		Used to indicate the sampling cycle of		
		feedback. The regulator calculates in each		
P09.07	Sampling cycle (T)	sampling cycle. A longer sampling cycle	0.001s	0
		indicates slower response.		
		Setting range: 0.001–10.000s		
		The output of the PID system is relative to the		
		max. deviation of the closed loop reference. As		
	PID control	shown in the following figure, the PID regulator		
P09.08	deviation limit	stops regulating in the range of deviation limit.	0.0%	0
		Set the function parameter properly to adjust		
		the accuracy and stability of the PID system.		

Function code	Name	Description	Default	Modify
		Reference Reference Negative deviation limit (P09.08) Negative deviation limit (P09.08) Time t Setting range: 0.0—100.0%		
P09.09	PID output upper limit	The function codes are used to set the upper and lower limits of PID regulator output values.	100.0%	0
P09.10	PID output lower limit	100.0% corresponds to the max. output frequency (P00.03) or max. voltage (P04.31). Setting range of P09.09: P09.10–100.0% Setting range of P09.10: -100.0%—P09.09	0.0%	0
P09.11	Feedback offline detection value	Used to set the PID feedback offline detection value. When the feedback value is smaller than	0.0%	0
P09.12	Feedback offline detection time	or equal to the feedback offline detection value, and the duration exceeds the value specified by P09.12, the VFD reports "PID feedback offline fault" and the keypad displays PIDE. Output frequency 11 <t2, 0.0–100.0%="" 0.0–3600.0s<="" continues="" fault="" of="" output="" p09.11="" p09.11:="" p09.12:="" pide="" range="" running="" setting="" so="" t2="P09.12" td="" the="" vfd=""><td>1.0s</td><td>0</td></t2,>	1.0s	0
P09.13	PID control selection	0x0000–0x1111 Ones place: 0: Continue integral control after the frequency reaches upper/lower limit 1: Stop integral control after the frequency reaches upper/lower limit Tens place: 0: Same as the main reference direction	0x0001	0

Function code	Name	Description	Default	Modify
		1: Contrary to the main reference direction Hundreds place: 0: Limit as per the max. frequency 1: Limit as per A frequency Thousands place: 0: A+B frequency. ACC/DEC of main reference A frequency source buffering is invalid. 1: A+B frequency. ACC/DEC of main reference A frequency source buffering is valid. The ACC/DEC is determined by P08.04 (ACC time 4).		
P09.14	Low frequency proportional gain (Kp)	0.00–100.00 Low-frequency switching point: 5.00Hz High-frequency switching point: 10.00Hz (P09.04 corresponds to high-frequency parameter), and the middle is the linear interpolation between these two points.	1.00	0
P09.15	ACC/DEC time of PID command	0.0–1000.0s	0.0s	0
P09.16	PID output filter time	0.000–10.000s	0.000s	0
P09.18	Low frequency integral time	0.00-10.00s	0.90s	0
P09.19	Low frequency differential time	0.00-10.00s	0.00s	0
P09.20	Low frequency point for PID parameter switching	0.00Hz-P09.21	5.00Hz	0
P09.21	High frequency point for PID parameter switching	P09.20–P00.03	10.00Hz	0

Group P10—Simple PLC and multi-step speed control

Function code	Name	Description	Default	Modify
P10.00		0: Stop after running once The VFD stops automatically after running for	0	0

Function code	Name	Description	Default	Modify
		one cycle, and it can be started only after		
		receiving the running command.		
		1: Keep running with the final value after		
		running once		
		The VFD keeps the running frequency and		
		direction of the last section after a single cycle. 2: Cyclic running		
		The VFD enters the next cycle after completing		
		one cycle until receiving the stop command.		
		0: Do not memorize at power outage		
	Simple PLC	1: Memory at power-off. The PLC memories its		
P10.01	memory selection	running stage and running frequency before	0	0
	oory colocilo	power-off.		
P10.02	Multi-step speed 0	Frequency setting range for steps from step 0	0.0%	0
D40.00	Running time of	to step 15: -100.0–100.0%. 100.0%	0.0-(:-)	
P10.03	step 0	corresponds to the max. output frequency	0.0s(min)	0
P10.04	Multi-step speed 1	P00.03.	0.0%	0
P10.05	Running time of	Running time setting range for steps from step	0.0s(min)	0
F 10.05	step 1	0 to step 15: 0.0–6553.5s(min). The time unit is	0.05(11111)	0
P10.06	Multi-step speed 2	specified by P10.37.	0.0%	0
P10.07	Running time of	When simple PLC operation is selected, it is	0.0s(min)	0
1 10.01	step 2	required to set P10.02–P10.33 to determine the	0.00(11111)	
P10.08	Multi-step speed 3	running frequency and running time of each	0.0%	0
P10.09	Running time of	step. Note: The symbol of multi-step speed	0.0s(min)	0
	step 3	determines the running direction of simple		
P10.10	Multi-step speed 4	PLC, and the negative value means reverse	0.0%	0
P10.11	Running time of	running.	0.0s(min)	0
D40.40	step 4	Deceleration time P10.28 (two sections)	0.00/	
P10.12	Multi-step speed 5	P10.02 P10.04	0.0%	0
P10.13	Running time of step 5	P10.32	0.0s(min)	0
P10.14	Multi-step speed 6	Acceleration time (two sections)	0.0%	0
	Running time of	P10.06		
P10.15	step 6	P10.03 P10.05 P10.07 P10.31 P10.33	0.0s(min)	0
P10.16	Multi-step speed 7	When selecting multi-step speed running, the	0.0%	0
P10.17	Running time of	multi-step speed is within the range of	0.0s(min)	0
F 10.17	step 7	-Fmax-Fmax, and it can be set continuously.	0.05(11111)	J
P10.18	Multi-step speed 8	The start/stop of multi-step stop running is also	0.0%	0
P10.19	Running time of	determined by P00.01.	0.0s(min)	0
	step 8	The VFD supports the setting of 16-step speed,	. ,	
P10.20	Multi-step speed 9	which are set by combined codes of multi-step	0.0%	0

Function code	Name			Des	cription	on			Default	Modify
P10.21	Running time of step 9		lls 1–4 set	by S ode			correspo	onding and	0.0s(min)	0
P10.22	Multi-step speed 10	corresp	ond to m	ulti-st	ep sp	peed () to mul	ti-step	0.0%	0
P10.23	Running time of step 10	speed 1	15. ↑ Output freq	iency					0.0s(min)	0
P10.24	Multi-step speed 11		1,12		6		H41		0.0%	0
P10.25	Running time of step 11					9,07	13 15	<u>t</u>	0.0s(min)	0
P10.26	Multi-step speed 12	torm	inal 1	N ON	ом о	N ON	ом ом	t_	0.0%	0
P10.27	Running time of step 12	termi	inal 2	ON	ON	ON	QN ON	<u>t</u>	0.0s(min)	0
P10.28	Multi-step speed 13	termi				ON		t	0.0%	0
P10.29	Running time of step 13		 erminal 3						0.0s(min)	0
P10.30	Multi-step speed 14		cy input r			•			0.0%	0
P10.31	Running time of step 14	frequen	. When te icy set by	multi	-step	speed	l will pre	vail,	0.0s(min)	0
P10.32	Multi-step speed 15		priority o at of the k						0.0%	0
P10.33	Running time of step 15	pulse, f The rela multi-st	PID, and cationship ep speed g (T indic OFF ON OFF OFF OFF OFF OFF OFF OFF ON OFF OFF	steps ates to off on off off	unica een te s are s ermir ON OFF ON ON OFF ON ON ON OFF ON	ermina shown nal). OFF OOFF OOFF OOFF OOFF OOFF OOFF OOF	ettings. Is 1–4 a in the N OFF FF ON N ON FF OFF 6 N OFF FF ON N ON N ON		0.0s(min)	0
P10.34	ACC/DEC time of steps 0–7 of simple PLC	Code	Scription is	Step	ACC, DEC T	/ ACC	T2 DEC T3		0x0000	0
	ACC/DEC time of	ll F	BIT1 BIT0		00	01	10	11		
P10.35	steps 8–15 of simple PLC	-	BIT3 BIT2 BIT5 BIT4	_	00	01	10	11	0x0000	0

Function code	Name)esc	riptio	n			Default	Modify
			BIT7	BIT6	3	00	01	10	11		
			ВІТ9	BIT8	4	00	01	10	11		
			BIT11	BIT10	5	00	01	10	11		
			BIT13	BIT12	6	00	01	10	11		
			BIT15	BIT14	7	00	01	10	11		
			BIT1	BIT0	8	00	01	10	11		
			ВІТЗ	BIT2	9	00	01	10	11		
			BIT5	BIT4	10	00	01	10	11		
			BIT7	BIT6	11	00	01	10	11		
		P10.35	ВІТ9	BIT8	12	00	01	10	11		
			BIT11	BIT10	13	00	01	10	11		
			BIT13	BIT12	14	00	01	10	11		
			BIT15	BIT14	15	00	01	10	11		
		time, into h corres ACC/I ACC/I ACC/I Settin	and texade spondice of the control o	espond hen concimal ing fund me 1 is me 2 is me 3 is me 4 is je: 0x0	onvernum ction s set s set s set s set	ert 16-lber, fir codes by P0 by P0 by P0 by P0 by P0	bit bin nally, a 6. 0.11 a 8.00 a 8.02 a 8.04 a	ary no and the and P0 and P0 and P0 and P0	umber en set 0.12; 8.01; 8.03; 8.05.		
P10.36	PLC restart mode	stops comm the firs 1: Co when stops or faul step, restand	during and, for strength stren	ault or after of afte	nnir powerestang foccuring (or of the thins th	rer dover the remark t	eaused vn), it vene step namely by stoning time automag at the naining	by will rur of req if the p com ne of contically efreq g time.	stop uency VFD mand urrent after uency	0	0
P10.37	Multi-step time unit	counte	ed in s	the rusecond	S					0	0

Function code	Name	Description	Default	Modify
		counted in minutes.		

Group P11—Protection parameters

Function	Name	Description	Default	Modify
code		·		•
P11.00	Protection against phase loss	0x000–0x1111 Ones place: Reserved Tens place: 0: Disable output phase loss protection. 1: Enable output phase loss protection. Hundreds place: 0: Disable hardware input phase loss protection. 1: Enable hardware input phase loss protection. 1: Enable hardware input phase loss protection. Thousands place: 0: During stop, if a hardware input phase loss fault occurs, it reports SPI. 1: During stop, if a hardware input phase loss fault occurs, it reports A-SPI.	Model depended	0
P11.01	Frequency decrease at sudden power loss	0: Disable 1: Enable	0	0
P11.02	Enabling energy-consumptio n braking for stop	0: Enable 1: Disable	0	0
P11.03	Overvoltage stalling protection	O: Disable 1: Enable DC bus voltage V Overvoltage stall threshold Output frequency Note: It can be modified only when P11.26 is 1 indicating special functions are enabled.	0	0
P11.04	Overvoltage stalling	120–150% (standard bus voltage) (380V)	136%	0

Function code	Name	Description	Default	Modify
code	protection voltage	120–150% (standard bus voltage) (220V)	120%	
P11.05	Current limit selection	During accelerated running, as the load is too large, the actual acceleration rate of motor is lower than that of output frequency, if no measures are taken, the VFD may trip due to overcurrent during acceleration. 0x00–0x21 Ones place: Hardware and software current-limit action selection 0: Invalid 1: Always valid Tens place: Hardware current limit overload alarm 0: OL2 is valid. 1: OL2 is invalid. 2: Reserved Note: It can be modified only when P11.26 is 1 indicating special functions are enabled.	10	0
P11.06	Automatic current limit threshold	Current-limit protection function detects output current during running, and compares it with the	250.0%	0
P11.07	Frequency decrease ratio in current limiting	current-limit level defined by P11.06, if it exceeds the current-limit level, the VFD will run at stable frequency during accelerated running, or run in decreased frequency during constant-speed running; if it exceeds the current-limit level continuously, the VFD output frequency will drop continuously until reaching lower limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. Current-limit frequency frequen	10.00 Hz/s	0

Function code	Name	Description	Default	Modify
P11.08	VFD/motor OL/UL pre-alarm selection	If the VFD or motor output current is larger than the overload pre-alarm detection level (P11.09),	0x0000	0
P11.09	Overload pre-alarm detection threshold	and the duration exceeds the overload pre-alarm detection time (P11.10), overload pre-alarm signal will be outputted.	150%	0
P11.10	Overload pre-alarm detection time	Pre-alarm time t Paul time t Pre-alarm time t Pre-alarm time t Paul time t Pre-alarm time t Paul time t Pre-alarm time t Paul time t Pre-alarm time t Paul time t Pre-alarm time t Paul time t Pre-al	1.00s	0

Function code	Name	Description	Default	Modify
coue		Related to current calibration coefficient Unrelated to current calibration coefficient		
		P11.09 setting range: P11.11–200% (relative		
		value determined by the ones place of P11.08)		
		Setting range of P11.10: 0.01–3600.0s		
	Underload	Underload pre-alarm signal will be outputted if		
P11.11	pre-alarm detection	the output current of the VFD or motor is lower	25%	0
	threshold	than underload pre-alarm detection level		
		(P11.11), and the duration exceeds underload		
5	Underload	pre-alarm detection time (P11.12). Setting range of P11.11: 0–P11.09 (relative		
P11.12	pro diami dotoction	value determined by the ones place of P11.08)	0.05s	0
	time	Setting range of P11.12: 0.01–360.00s		
		Used to set the action of fault output terminals		
		at undervoltage and fault reset.		
		0x00–0x11		
	Fault output	Ones place:		
P11.13	terminal action	0: Act at undervoltage	0x00	0
	upon fault occurring	1: Do not act upon an undervoltage fault		
		Tens place:		
		0: Act during automatic reset		
		1: Do not act during the automatic reset period		
D44.44	Speed deviation	0.0–50.0%	40.00/	
P11.14	detection value	Used to set the speed deviation detection	10.0%	0
		value.		
		Used to set the speed deviation detection time.		
		If P11.14 is set to a non-zero value, and the		
	Connad dayinti	speed deviation is greater than the value of		
P11.15	Speed deviation detection time	P11.14, which lasts the time specified by	2.0s	0
	detection time	P11.15, the speed deviation fault dEu is		
		reported. Note: Speed deviation protection is invalid		
		when P11.15=0.0.		
		WIICH F 11.13=0.0.		

Function code	Name	Description	Default	Modify
		Actual detection value Set detection value Set detection value 11 <12, so the VFD continues running t2=P11.15 Setting range: 0.0—10.0s		
P11.16	Automatic frequency-reductio n during voltage drop	0-1 0: Invalid 1: Valid Standard Bus voltage Vdc bus voltage Voltage Output frequency f Dus voltage Set frequency Time t Dus voltage Standard bus voltage Time t	0	0
P11.17	Proportional coefficient of voltage regulator during undervoltage stall	Used to set the proportional coefficient of the bus voltage regulator during undervoltage stall. Setting range: 0–1000	100	0
P11.18	Integral coefficient of voltage regulator during undervoltage stall	Used to set the integral coefficient of the bus voltage regulator during undervoltage stall. Setting range: 0–1000	40	0
P11.19	Proportional coefficient of current regulator during undervoltage stall	Used to set the proportional coefficient of the active current regulator during undervoltage stall. Setting range: 0–1000	25	0
P11.20	Integral coefficient	Used to set the integral coefficient of the active	150	0

Function code	Name	Description	Default	Modify
	of current regulator during undervoltage stall	current regulator during undervoltage stall. Setting range: 0–2000		
P11.21	Proportional coefficient of voltage regulator during overvoltage stall	Used to set the proportional coefficient of the bus voltage regulator during overvoltage stall. Setting range: 0–1000	60	0
P11.22	Integral coefficient of voltage regulator during overvoltage stall	Used to set the integral coefficient of the bus voltage regulator during overvoltage stall. Setting range: 0–1000	10	0
P11.23	Proportional coefficient of current regulator during overvoltage stall	Used to set the proportional coefficient of the active current regulator during overvoltage stall. Setting range: 0–1000	60	0
P11.24	Integral coefficient of current regulator during overvoltage stall	Used to set the integral coefficient of the active current regulator during overvoltage stall. Setting range: 0–2000	250	0
P11.25	Enabling VFD overload integral	0: Disable 1: Enable When this parameter is set to 0, the overload timing value P17.48 is reset to zero after the VFD is stopped. In this case, the determination of VFD overload takes more time, and therefore the effective protection over the VFD is weakened. When this parameter is set to 1, the overload timing value P17.48 is not reset, and the overload timing value is accumulative. In this case, the determination of VFD overload takes less time, and therefore the protection over the VFD can be performed more quickly. VFD overload curve	0	0

Function code	Name	Description	Default	Modify
		Somin Overload time 30min 10min 10min 5min 605 455 300 455 315 15 114% 123% 132% 141% 150% 159% 168% 177% 186% 159% 204% 0verload stan 1 Overload end 1 Overload stan 2 Start/stop command Start Start Overload counting When P11.25-0 P17.48 When P11.25-1 P17.48		
P11.26	Enabling special functions	Ones place: Special function 1 0: Disable 1: Enable Tens place: Special function 2 0: Disable 1: Enable Hundreds place: Special function 3 0: Disable 1: Enable Special functions 1 include P11.03 (Overvoltage stall protection), P11.05 (Current-limit selection), P01.00 (Running mode of start), P00.13 (Running direction), P03.20 (Set upper limit of the torque when motoring via keypad), P03.21 (Set upper limit of brake torque via keypad), and P08.37Enabling energy-consumption braking. When this parameter is set to 0, special function codes (except P08.37) are restored to the factory settings and are not displayed, and	0x000	©

Function	Name	Description	Default	Modify
code				•
		therefore cannot be modified.		
		When this parameter is set to 1, special		
		function codes can be modified and used		
		normally.		
		Special function 2 includes:		
		When it is set to 0, the function is invalid.		
		When it is set to 1, different parameters are		
		automatically matched for the open-loop vector		
		and closed-loop vector.		
		Special function 3 includes:		
		When it is set to 0, the function is invalid.		
		When it is set to 1, P08.66 (Motor parameter		
		autotuning selection during power-on) can be valid.		
		0x00–0x11		
	VF oscillation control method	Ones place:		
		0: Method 1		
P11.27		1: Method 2	0x00	0
		Tens place: Reserved		
		Note: For SMs, only method 1 is supported;		
		for AMs, both methods are supported.		
	SPO switch-on	Note: The SPO detection is started only after		
P11.28	detection delay	the VFD runs for the delay time P11.28 to avoid	5.0	0
	time	false alarms caused by the unstable frequency.		
P11.29	SPO unbalance	Setting range of P11.28: 0.0–60.0s	6	0
P11.29	multiple	Setting range of P11.29: 0–10	ь	O
P11.30	Reserved	0–2	0	0
P11.31	Fault severity group	0x0000–0x3333	0x0000	0
1 11.51	1	Thousands place/hundreds place/tens	000000	0
P11.32	Fault severity group	place/ones place:	0x0000	0
P11.32	2	0: Report a fault	000000	O
P11.33	Fault severity group	1: Report a fault after deceleration to stop in	0x0000	0
F11.33	3	emergency	000000	O
P11.34	Fault severity group	2: Pre-alarm, with the action executed	0,0000	0
P11.34	4	according to P11.56	0x0000	
	Fault severity group	3: Screen out fault		
P11.35	5	Note: Different fault actions are taken for	0x0000	0
	5	different fault severities.		

Function code	Name	Description	Default	Modify
P11.36	6	The first 10 faults are not grouped by severity, but each four of the subsequent faults are	0x0000	0
P11.37	Fault severity group 7	grouped by severity in ascending order from right to left in hexadecimal format, that is, from	0x0000	0
P11.38	Fault severity group 8	example, the ones place of fault severity group	0x0000	0
P11.39	Fault severity group 9	1 corresponds to fault 11, OL1). Group 1: Faults 11–14 (OL1, OL2, SPI, SPO) Group 2: Faults 15–18 (OH1, OH2, EF, CE)	0x0000	0
P11.40	Fault severity group 10	Group 3: Faults 19–22 (ItE, tE, EEP, PIDE) Group 4: Faults 23–26 (bCE, END, OL3, PCE)	0x0000	0
P11.41	Fault severity group 11	Group 5: Faults 27–30 (UPE, DNE, E-DP, E-NET)	0x0000	0
P11.42	Fault severity group 12	Group 6: Faults 31–34 (E-CAN, ETH1, ETH2, dEu)	0x0000	0
P11.43	13	Group 7: Faults 35–38 (Sto, LL, ENC1O, ENC1D)	0x0000	0
P11.44	14	Group 8: Faults 39–42 (ENC1Z, STO, STL1, STL2)	0x0000	0
P11.45	Fault severity group 15	Group 9: Faults 43–46 (STL3, CrCE, P-E1, P-E2)	0x0000	0
P11.46	Fault severity group 16	P-E6)	0x0000	0
P11.47	Fault severity group 17	Group 11: Faults 51–54 (P-E7, P-E8, P-E9, P-E10) Group 12: Faults 55–58 (E-Err, ENCU, E-PN,	0x0000	0
P11.48	Fault severity group 18	SECAN) Group 13: Faults 59–62 (OT, F1-Er, F2-Er,	0x0000	0
P11.49	Fault severity group 19	F3-Er) Group 14: Faults 63–66 (C1-Er, C2-Er, C3-Er,	0x0000	0
P11.50	Fault severity group 20		0x0000	0
P11.51	Fault severity group 21	Group 16: Faults 71–74 (tbE, FAE, tPF, STC)	0x0000	0
P11.52	Fault severity group 22	Group 17: Faults 75–78 (LSP, tCE, POE, SLE) Group 18: Faults 79–82 (bE, ELS, AdE, OtE1)	0x0000	0
P11.53	Fault severity group 23	Group 19: Faults 83–86 (OtE2, SFE, Cuu, PtcE)	0x0000	0

Function code	Name	Description	Default	Modify
P11.54	Fault severity group 24	Group 20: Faults 87–90 (E-OvL, E-OS, E-dS, Reserved)	0x0000	0
P11.55	Fault severity group 25	Group 21: Faults 91–94 (Reserved, E-Al1, E-Al2, E-Al3) Group 22: Faults 95–98 (E-EIP, E-PAO, EnC2O, EnCPI) Group 23: Faults 99–102 (E-PuP, E-Pdn, E-CL, Reserved) Group 24: Faults 103–106 (Reserved, Reserved, Reserved, Reserved) Group 25: Faults 107–110 (Reserved, Reserved, Reserved, Reserved, Reserved, Reserved, Reserved, Reserved, Reserved, Reserved)	0x0000	0
P11.56	Action for fault pre-alarm	0-4 0: Run at the set frequency 1: Run at the output frequency at the time of failure 2: Run at the upper limit frequency 3: Run at the lower limit frequency 4: Run at the backup frequency upon exceptions	0	0
P11.57	Backup frequency upon exceptions	0.00-630.00Hz	0.00Hz	0
P11.59	SM weakening current limit in V/F control	0.0–150.0%	50.0%	0
P11.61	SSI position downward limit low value	0–65535	0	0
P11.62	SSI position downward limit high value	0–65535	0	0
P11.63	SSI position upward limit low value	0–65535	0	0
P11.64	SSI position upward limit high value	0–65535	0	0

Group P12—Parameters of motor 2

-	Parameters of m			
Function code	Name	Description	Default	Modify
P12.00	Type of motor 2	0: Asynchronous motor (AM) 1: Synchronous motor (SM)	0	0
P12.01	Rated power of AM 2	0.1–3000.0kW	Model depended	0
P12.02	Rated frequency of AM 2	0.01Hz-P00.03 (Max. output frequency)	50.00Hz	0
P12.03	Rated speed of AM 2	1–60000RPM	Model depended	0
P12.04	Rated voltage of AM 2	0–1200V	Model depended	0
P12.05	Rated current of AM 2	0.8–6000.0A	Model depended	0
P12.06	Stator resistance of AM 2	0.001–65.535Ω	Model depended	0
P12.07	Rotor resistance of AM 2	0.001–65.535Ω	Model depended	0
P12.08	Leakage inductance of AM 2	0.1–6553.5mH	Model depended	0
P12.09	Mutual inductance of AM 2	0.1–6553.5mH	Model depended	0
P12.10	No-load current of AM 2	0.1–6553.5A	Model depended	0
P12.11	Magnetic saturation coefficient 1 of iron core of AM 2	0.0–100.0%	80%	0
P12.12	Magnetic saturation coefficient 2 of iron core of AM 2	0.0–100.0%	68%	0
P12.13	Magnetic saturation coefficient 3 of iron core of AM 2	0.0–100.0%	57%	0
P12.14	Magnetic saturation coefficient 4 of iron core of AM 2	0.0–100.0%	40%	0
P12.15	Rated power of SM 2	0.1–3000.0kW	Model depended	0

Function code	Name	Description	Default	Modify
P12.16	Rated frequency of SM 2	0.01Hz-P00.03 (Max. output frequency)	50.00Hz	0
P12.17	Number of pole pairs of SM 2	1–128	2	0
P12.18	Rated voltage of SM 2	0–1200V	Model depended	0
P12.19	Rated current of SM 2	0.8–6000.0A	Model depended	0
P12.20	Stator resistance of SM 2	0.001–65.535Ω	Model depended	0
P12.21	Direct-axis inductance of SM 2	0.01–655.35mH	Model depended	0
P12.22	Quadrature-axis inductance of SM 2	0.01–655.35mH	Model depended	0
P12.23	Counter-emf constant of SM 2	0–10000V	300V	0
P12.24– P12.25	Reserved			•
P12.26	Overload protection selection of motor 2	O: No protection 1: Common motor (with low-speed compensation) 2: Frequency-variable motor (without low-speed compensation)	2	0
P12.27	Overload protection coefficient of motor 2	Motor overload multiplication M = I _{out} /(I _n *K) I _n indicates the rated motor current, I _{out} indicates the VFD output current, and K indicates the motor overload protection coefficient. A smaller value of "K" indicates a bigger value of "M". When M=116%, protection is performed after motor overload lasts for 1 hour; when M=200%, protection is performed after motor overload lasts for 60 seconds; and when M≥400%, protection is performed immediately.	100.0%	0

Function code	Name	Description	Default	Modify
		Time t 1h Motor overload multiples 116 % 200 % Setting range: 20.0%—150.0%		
P12.28	Power display calibration coefficient of motor 2	0.00–3.00	1.00	0
P12.29	Parameter display of motor 2	O: Display by motor type In this mode, only parameters related to the present motor type are displayed. 1: Display all In this mode, all the motor parameters are displayed.	0	0
P12.30	System inertia of motor 2	0–30.000kgm²	0.000 kgm²	0
P12.31	Speed control switchover mode of motor 2	O: No switchover, which indicates keeping consistent with P00.00 of motor 1 1: Switch to SVC1 2: Switch to VF 3: Switch to FVC	0	0

Group P13—SM control

Function code	Name	Description	Default	Modify
P13.00	SM injected-current	Used to set the reduction rate of the input reactive current. When the active current of the synchronous motor increases to some extent, the input reactive current can be reduced to improve the power factor of the motor. Setting range: 0.0%–100.0% (of the motor rated current)	80.0%	0
P13.01	Detection mode of initial pole	No detection High frequency superposition	0	0

Function code	Name	Description	Default	Modify
		2: Pulse superposition		
P13.02	Pull-in current 1	Pull-in current is the pole position orientation current; pull-in current 1 is valid within the lower limit of pull-in current switch-over frequency threshold. If you need to increase the start torque, increase the value of this function parameter properly. Setting range: 0.0%–100.0% (of the motor rated current)	20.0%	0
P13.03	Pull-in current 2	Pull-in current is the pole position orientation current; pull-in current 2 is valid within the lower limit of pull-in current switch-over frequency threshold. You do not need to change the value in most cases. Setting range: 0.0%–100.0% (of the motor rated current)	10.0%	0
P13.04	Switch-over frequency of pull-in current	0.0–200.0% (of the motor rated frequency)	20.0%	0
P13.05	High-frequency superposition frequency	200–1000Hz	500Hz	0
P13.06	High-frequency superposition voltage	Specifies the pulse current threshold when the initial magnetic pole position is detected in the pulse mode. The value is a percentage in relative to the rated current of the motor. Setting range: 0.0–300% (of the motor rated voltage)	100.0%	0
P13.07	Control parameter 0	0.0–400.0	0.0	0
P13.08	Control parameter 1	0-0xFFFF	0	0
P13.09	Frequency threshold of phase-lock loop switch-in	Used to set the frequency threshold for enabling the counter-electromotive force phase-locked loop in SVC 0. When the running frequency is lower than the value of the function code, the phase-locked loop is disabled; and when the running frequency is higher than that,	50.00	0

Function code	Name	Description	Default	Modify
		the phase-locked loop is enabled.		
		Setting range: 0-655.35		
	Initial			
P13.10	compensation	0.0–359.9	0.0	0
	angle of SM			
		Used to adjust the responsiveness of		
		anti-maladjustment function. If the load inertia is		
P13.11	Mal-adjustment	large, increase the value of this parameter	0.5s	0
F 13.11	detection time	properly, however, the responsiveness may	0.58	O
		slow down accordingly.		
		Setting range: 0.0–10.0s		
	SM high-frequency	Valid when the motor speed exceeds the rated		
P13.12	compensation	speed. If oscillation occurred to the motor,	0.0%	0
1 10.12	coefficient	adjust this parameter properly.	0.070	O
	COEITICIEIT	Setting range: 0.0–100.0%		
P13.13	High-frequency	0-300.0% (of the rated VFD output current)	20.0%	0
1 13.13	pull-in current	o ooo.o70 (of the fated VI B output outretty)	20.070	
	Identifying initial			
P13.14	pole angle after SM	0: Identify again after switchover	0	0
r 13.14	dual PG card	1: Do not identify after switchover	U	
	switchover			

Group P14—Serial communication

Function code	Name	Description	Default	Modify
P14.00	Local communication address	Setting range: 1–247 When the master writes the slave communication address to 0 indicating a broadcast address in a frame, all the salves on the Modbus bus receive the frame but do not respond to it. The communication addresses on the communication network are unique, which is the basis of the point-to-point communication. Note: The communication address of a slave cannot be set to 0.	1	0
P14.01	Communication baud rate setting	The function code is used to set the rate of data transmission between the upper computer and the VFD. 0: 1200 bps		0

Function code	Name	Description	Default	Modify
code		1: 2400 bps 2: 4800 bps 3: 9600 bps 4: 19200 bps 5: 38400 bps 6: 57600 bps 7: 115200 bps Note: The baud rate set on the VFD must be consistent with that on the upper computer.		
		Otherwise, the communication fails. A greater baud rate indicates faster communication.		
P14.02	Data bit check setting	The data format set on the VFD must be consistent with that on the upper computer. Otherwise, the communication fails. 0: No check (N, 8, 1) for RTU 1: Even check (E, 8, 1) for RTU 2: Odd check (O, 8, 1) for RTU 3: No check (N, 8, 2) for RTU 4: Even check (E, 8, 2) for RTU 5: Odd check (O, 8, 2) for RTU	1	0
P14.03	Communication response delay	0–200ms The function code indicates the communication response delay, that is, the interval from when the VFD completes receiving data to when it sends response data to the upper computer. If the response delay is shorter than the rectifier processing time, the rectifier sends response data to the host controller after processing data. If the delay is longer than the rectifier processing time, the rectifier does not send response data to the host controller until the delay is reached although data has been processed.	5ms	0
P14.04	Communication timeout time	0.0 (invalid)–60.0s When the function code is set to 0.0, the communication timeout time is invalid. When the function code is set to a non-zero value, the system reports the "485	0.0s	0

Function				
code	Name	Description	Default	Modify
		communication fault" (CE) if the communication		
		interval exceeds the value.		
		In general, the function code is set to 0.0. When		
		continuous communication is required, you can		
		set the function code to monitor communication		
		status.		
		0: Report an alarm and coast to stop		
		1: Keep running without reporting an alarm		
	Transmission error	2: Stop in enabled stop mode without reporting		
P14.05		an alarm (applicable only to communication	0	0
	processing	mode)		
		3: Stop in enabled stop mode without reporting		
		an alarm (applicable to any mode)		
		0x000-0x111		
	Modbus communication processing action selection	Ones place:		
		0: Respond to write operations		
		1: Not respond to write operations		
		Tens place:	0x000	
		0: Communication password protection is		
P14.06		invalid.		0
		1: Communication password protection is valid.		
		Hundreds place:		
		0: User-defined addresses specified by P14.07		
		and P14.08 are invalid.		
		1: User-defined addresses specified by P14.07		
		and P14.08 are valid.		
	User-defined	0x0000-0xFFFF		
P14.07	running command	Note: This parameter specifies the	0x2000	0
	address	user-defined Modbus run command		
		address.		
	User-defined	0x0000-0xFFFF		
P14.08	frequency setting	Note: This parameter specifies the	0x2001	0
	address	user-defined Modbus frequency setting		
		address.		
	Modbus TCP	0.0–60.0s		
P14.09	communication	Note: It is invalid when the value is 0.0.	5.0s	0
	timeout time			
P14.10	Enabling 485	0–1	0	0

Function code	Name	Description	Default	Modify
	upgrade program	0: Disable 1: Enable		
P14.11	Bootload software version	0.00–655.35	0.00	•
P14.12	Display of no upgrade bootload fault	0–1 0: Display 1: Do not display	1	0
P14.14	Low bit of digital locating position reference	0–65535	0	0
P14.15	High bit of digital locating position reference	0–65535	0	0
P14.48	Channel selection for mapping between PZDs and function codes	0x00–0x12 Ones place: Channel for mapping function codes to PZDs 0: Reserved 1: Group P15 2: Group P16 Tens place: Save function at power off 0: Disable 1: Enable	0x12	0
P14.49	Mapped function code of received PZD2	0x0000-0xFFFF	0x0000	0
P14.50	Mapped function code of received PZD3	0x0000-0xFFFF	0x0000	0
P14.51	Mapped function code of received PZD4	0x0000-0xFFFF	0x0000	0
P14.52	Mapped function code of received PZD5	0x0000-0xFFFF	0x0000	0
P14.53	Mapped function code of received PZD6	0x0000-0xFFFF	0x0000	0

Function code	Name	Description	Default	Modify
P14.54	Mapped function code of received PZD7	0x0000-0xFFFF	0x0000	0
P14.55	Mapped function code of received PZD8	0x0000-0xFFFF	0x0000	0
P14.56	Mapped function code of received PZD9	0x0000-0xFFFF	0x0000	0
P14.57	Mapped function code of received PZD10	0x0000-0xFFFF	0x0000	0
P14.58	Mapped function code of received PZD11	0x0000-0xFFFF	0x0000	0
P14.59	Mapped function code of received PZD12	0x0000-0xFFFF	0x0000	0
P14.60	Mapped function code of sent PZD2	0x0000-0xFFFF	0x0000	0
P14.61	Mapped function code of sent PZD3	0x0000-0xFFFF	0x0000	0
P14.62	Mapped function code of sent PZD4	0x0000-0xFFFF	0x0000	0
P14.63	Mapped function code of sent PZD5	0x0000-0xFFFF	0x0000	0
P14.64	Mapped function code of sent PZD6	0x0000-0xFFFF	0x0000	0
P14.65	Mapped function code of sent PZD7	0x0000-0xFFFF	0x0000	0
P14.66	Mapped function code of sent PZD8	0x0000-0xFFFF	0x0000	0
P14.67	Mapped function code of sent PZD9	0x0000-0xFFFF	0x0000	0
P14.68	Mapped function code of sent PZD10	0x0000-0xFFFF	0x0000	0
P14.69	Mapped function	0x0000-0xFFFF	0x0000	0

Function code	Name	Description	Default	Modify
	code of sent PZD11			
P14.70	Mapped function code of sent	0x0000-0xFFFF	0x0000	0
	PZD12			

Group P15—Communication expansion card 1 functions

Function code	Name	Description	Default	Modify
P15.01	Module address	0–127	2	0
P15.02	Received PZD2	0–49	0	0
P15.03	Received PZD3	0: Invalid	0	0
P15.04	Received PZD4	1: Set frequency (-Fmax–Fmax, unit: 0.01Hz)	0	0
P15.05	Received PZD5	2: PID reference (-1000-1000, in which 1000	0	0
P15.06	Received PZD6	corresponds to 100.0%)	0	0
P15.07	Received PZD7	3: PID feedback (-1000-1000, in which 1000	0	0
P15.08	Received PZD8	corresponds to 100.0%)	0	0
P15.09	Received PZD9	4: Torque setting (-3000–+3000, in which 1000	0	0
P15.10	Received PZD10	corresponds to 100.0% of the motor rated	0	0
P15.11	Received PZD11	current) 5: Setting of the upper limit of forward running	0	0
P15.12	Received PZD12	frequency (0–Fmax, unit: 0.01Hz) 6: Setting of the upper limit of reverse running frequency (0–Fmax, unit: 0.01Hz) 7: Upper limit of the electromotive torque (0–3000, in which 1000 corresponds to 100.0% of the motor rated current) 8: Upper limit of braking torque (0–3000, in which 1000 corresponds to 100% of the motor rated current) 9: Virtual input terminal command. Range: 0x000–0x3FF 10: Virtual output terminal command (range: 0x00–0x3FF, corresponding to RO4/RO3/Y3/Y2/RO2/RO1/HDO/Y1) 11: Voltage setting (special for V/F separation) (0–1000, in which 1000 corresponds to 100% of the motor rated voltage) 12: AO1 output setting 1 (-1000–1000, in which	0	0

1000 corresponds to 100.0% 13: AO2 output setting 2 (-1000-1000, in which 1000 corresponds to 100.0% 14: High bit of position reference (signed) 15: Low bit of position reference (unsigned) 16: High bit of position feedback (signed) 17: Low bit of position feedback (unsigned) 18: Position feedback setting flag (position feedback can be set only after this flag is set to 1 and then to 0) 19-20: Reserved 21: Non-standard frequency reference 22: Pre torque setting (-3000-+3000, in which 1000 corresponds to 100.0% of the motor rated current) 23-25: Reserved 26: Encoder high bit 27: Encoder low bit 28-46: Reserved 47: ACC time (0-1000 corresponds to 0.0-100.0s) 47: DEC time (0-1000 corresponds to 0.0-100.0s) 47: DEC time (0-1000 corresponds to 0.0-100.0s) 48: Function parameter mapping (PZD2-PZD12 correspond to P14.49-P14.59) P15.13 Sent PZD3 0: Invalid 0 0 0 P15.14 Sent PZD3 0: Invalid 0 0 0 0 0 P15.15 Sent PZD4 1: Running frequency (x100, Hz) 0 0 0 0 0 0 0 0 0	Function	Name	Description	Default	Modify
13: AO2 output setting 2 (-1000–1000, in which 1000 corresponds to 100.0%) 14: High bit of position reference (signed) 15: Low bit of position reference (unsigned) 16: High bit of position feedback (signed) 17: Low bit of position feedback (unsigned) 18: Position feedback setting flag (position feedback can be set only after this flag is set to 1 and then to 0) 19–20: Reserved 21: Non-standard frequency reference 22: Pre torque setting (-3000—+3000, in which 1000 corresponds to 100.0% of the motor rated current) 23–25: Reserved 26: Encoder high bit 27: Encoder low bit 28–46: Reserved 47: ACC time (0–1000 corresponds to 0.0–100.0s) 47: DEC time (0–1000 corresponds to 0.0–100.0s) 48: Function parameter mapping (PZD2-PZD12 correspond to P14.49–P14.59) P15.13 Sent PZD2 P15.14 Sent PZD3 0: Invalid 0 0 0 P15.15 Sent PZD4 1: Running frequency (x100, Hz) 0 0 P15.16 Sent PZD5 2: Set frequency (x100, Hz) 0 0 0 P15.17 Sent PZD6 4: Output voltage (x1, V) 0 0 0 P15.18 Sent PZD7 5: Output current (x10, A) 0 0 0 P15.20 Sent PZD9 7: Actual output power (x10, %) 7: Actual output power (x10, %) 0 0 0 P15.21 Sent PZD1 9: Linear speed of running (x1, RPM) 0 0 0 P15.22 Sent PZD1 10: Ramp reference frequency	code	1100	2000 i piloti	Dordan	cay
1000 corresponds to 100.0% 14: High bit of position reference (signed) 15: Low bit of position reference (unsigned) 16: High bit of position feedback (signed) 17: Low bit of position feedback (unsigned) 18: Position feedback setting flag (position feedback can be set only after this flag is set to 1 and then to 0) 19–20: Reserved 21: Non-standard frequency reference 22: Pre torque setting (-3000—+3000, in which 1000 corresponds to 100.0% of the motor rated current) 23–25: Reserved 26: Encoder high bit 27: Encoder low bit 28–46: Reserved 47: ACC time (0–1000 corresponds to 0.0–100.0s) 47: DEC time (0–1000 corresponds to 0.0–100.0s) 49: Function parameter mapping (PZD2—PZD12 correspond to P14.49—P14.59) P15.13 Sent PZD2 0–67 0 0 0 0 0 0 0 0 0			1000 corresponds to 100.0%)		
14: High bit of position reference (signed) 15: Low bit of position reference (unsigned) 16: High bit of position feedback (signed) 17: Low bit of position feedback (signed) 17: Low bit of position feedback (unsigned) 18: Position feedback setting flag (position feedback can be set only after this flag is set to 1 and then to 0) 19-20: Reserved 21: Non-standard frequency reference 22: Pre torque setting (-3000—+3000, in which 1000 corresponds to 100.0% of the motor rated current) 23-25: Reserved 26: Encoder high bit 27: Encoder low bit 28-46: Reserved 47: ACC time (0–1000 corresponds to 0.0–100.0s) 47: DEC time (0–1000 corresponds to 0.0–100.0s) 49: Function parameter mapping (PZD2-PZD12 correspond to P14.49–P14.59) P15.13 Sent PZD2 0–67 0: Invalid 0 0 P15.14 Sent PZD3 1: Running frequency (x100, Hz) 0 0 P15.15 Sent PZD4 1: Running frequency (x100, Hz) 0 0 P15.17 Sent PZD5 2: Set frequency (x100, Hz) 0 0 P15.18 Sent PZD7 4: Output voltage (x1, V) 0 0 0 P15.19 Sent PZD8 7: Actual output torque (x10, %) 0 0 P15.20 Sent PZD1 9: Correspond frunning (x1, RPM) 0 0 P15.21 Sent PZD10 9: Linear speed of running (x1, RPM) 0 0 P15.22 Sent PZD11			13: AO2 output setting 2 (-1000–1000, in which		
15: Low bit of position reference (unsigned) 16: High bit of position feedback (signed) 17: Low bit of position feedback (unsigned) 18: Position feedback setting flag (position feedback can be set only after this flag is set to 1 and then to 0) 19–20: Reserved 21: Non-standard frequency reference 22: Pre torque setting (-3000—+3000, in which 1000 corresponds to 100.0% of the motor rated current) 23–25: Reserved 26: Encoder high bit 27: Encoder low bit 28–46: Reserved 47: ACC time (0–1000 corresponds to 0.0–100.0s) 47: DEC time (0–1000 corresponds to 0.0–100.0s) 49: Function parameter mapping (PZD2—PZD12 correspond to P14.49—P14.59) P15.13 Sent PZD2 P15.14 Sent PZD3 P15.15 Sent PZD4 1: Running frequency (x100, Hz) 2: Set frequency (x100, Hz) 2: Set frequency (x100, Hz) 3: Bus voltage (x1, V) 4: Output voltage (x1, V) 5: Output current (x10, A) 6: Actual output torque (x10, %) 7: Actual output torque (x10, %) P15.21 Sent PZD10 P15.22 Sent PZD11 P15.23 Sent PZD11 P15.24 Sent PZD11 P15.25 Sent PZD11 P15.26 Sent PZD11 P15.27 Sent PZD11 P15.28 Sent PZD11 P15.29 Sent PZD11 P15.29 Sent PZD11 P15.20 Sent PZD11 P15.20 Sent PZD11 P15.21 Sent PZD11 P15.22 Sent PZD11 P15.23 Sent PZD11 P15.24 Sent PZD11			1000 corresponds to 100.0%)		
16: High bit of position feedback (signed) 17: Low bit of position feedback (unsigned) 18: Position feedback setting flag (position feedback can be set only after this flag is set to 1 and then to 0) 19–20: Reserved 21: Non-standard frequency reference 22: Pre torque setting (-3000–+3000, in which 1000 corresponds to 100.0% of the motor rated current) 23–25: Reserved 26: Encoder high bit 27: Encoder low bit 28–46: Reserved 47: ACC time (0–1000 corresponds to 0.0–100.0s) 47: DEC time (0–1000 corresponds to 0.0–100.0s) 47: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59) P15.13 Sent PZD3 0: Invalid 0 0 0 P15.14 Sent PZD4 1: Running frequency (x100, Hz) 0 0 P15.15 Sent PZD5 2: Set frequency (x100, Hz) 0 0 0 P15.17 Sent PZD6 3: Bus voltage (x10, V) 0 0 0 P15.18 Sent PZD7 4: Output voltage (x1, V) 0 0 0 P15.19 Sent PZD8 6: Actual output torque (x10, %) 7: Actual output power (x10, %) 0 0 P15.20 Sent PZD1 8: Rotation speed of running (x1, RPM) 9 P15.21 Sent PZD1 9: Carper perference frequency			14: High bit of position reference (signed)		
17: Low bit of position feedback (unsigned) 18: Position feedback setting flag (position feedback can be set only after this flag is set to 1 and then to 0) 19–20: Reserved 21: Non-standard frequency reference 22: Pre torque setting (-3000—3000, in which 1000 corresponds to 100.0% of the motor rated current) 23–25: Reserved 26: Encoder high bit 27: Encoder low bit 28–46: Reserved 47: ACC time (0–1000 corresponds to 0.0–100.0s) 47: DEC time (0–1000 corresponds to 0.0–100.0s) 47: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59) P15.13 Sent PZD3 0: Invalid 0: Invalid 0: Invalid 0: Ramp requency (x100, Hz) 0: Sent PZD5 1: Running frequency (x100, Hz) 0: D15.16 Sent PZD6 1: Running frequency (x100, Hz) 0: D15.17 Sent PZD6 1: Running frequency (x100, Hz) 0: D15.18 Sent PZD7 1: Output voltage (x1, V) 0: D15.19 Sent PZD8 1: Output voltage (x1, V) 0: D15.19 Sent PZD8 1: Cattal output torque (x10, %) 0: D15.21 Sent PZD1 1: Running speed of running (x1, RPM) 0: D15.22 Sent PZD1 1: Running speed of running (x1, RPM) 0: D15.22 Sent PZD1 1: Running speed of running (x1, Mys) 0: D15.22 Sent PZD1 1: Running speed of running (x1, Mys) 0: D15.22 Sent PZD1 1: Running speed of running (x1, Mys) 0: D15.22 Sent PZD1 1: Running speed of running (x1, Mys) 0: D15.22 Sent PZD1 1: Running speed of running (x1, Mys) 0: D15.22 Sent PZD1 1: Running speed of running (x1, Mys) 0: D15.22 Sent PZD1 1: Running speed of running (x1, Mys) 0: D15.24 Sent PZD1 1: Running speed of running (x1, Mys) 0: D15.25 Sent PZD1 1: Running speed of running (x1, Mys) 0: D15.26 Sent PZD1 1: Running speed of running (x1, Mys) 0: D15.27 Sent PZD1 1: Running speed of running (x1, Mys) 0: D15.27 Sent PZD1 1: Running speed of running (x1, Mys) 0: D15.27 Sent PZD1 1: Running speed of running (x1, Mys) 0: D15.27 Sent PZD1 1: Running speed of running (x1, Mys) 0: D15.27 Sent PZD1 1: Running speed of running (x1, Mys) 0: D15.28 Sent PZD1 1: D15.29 Sent PZD1 1: D15.29 Sent PZD1 1: D15.29 Sent PZD1 1: D15.29 Sent PZD1 1: D15.29 Sent PZD1 1: D15.29 Sent PZ			15: Low bit of position reference (unsigned)		
18: Position feedback setting flag (position feedback can be set only after this flag is set to 1 and then to 0) 19–20: Reserved 21: Non-standard frequency reference 22: Pre torque setting (-3000—+3000, in which 1000 corresponds to 100.0% of the motor rated current) 23–25: Reserved 26: Encoder high bit 27: Encoder low bit 28–46: Reserved 47: ACC time (0–1000 corresponds to 0.0–100.0s) 47: DEC time (0–1000 corresponds to 0.0–100.0s) 47: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59) P15.13 Sent PZD2 0–67 P15.14 Sent PZD3 0: Invalid 0 0 0 P15.15 Sent PZD4 1: Running frequency (×100, Hz) 0 0 P15.16 Sent PZD5 2: Set frequency (×100, Hz) 0 0 P15.17 Sent PZD6 3: Bus voltage (×10, V) 0 0 P15.18 Sent PZD7 5: Output current (×10, A) 0 0 P15.19 Sent PZD8 6: Actual output torque (×10, %) 0 0 P15.20 Sent PZD1 9: Linear speed of running (×1, RPM) 0 0 P15.21 Sent PZD1 19: Ramp reference frequency			16: High bit of position feedback (signed)		
feedback can be set only after this flag is set to 1 and then to 0) 19–20: Reserved 21: Non-standard frequency reference 22: Pre torque setting (-3000—+3000, in which 1000 corresponds to 100.0% of the motor rated current) 23–25: Reserved 26: Encoder high bit 27: Encoder low bit 28–46: Reserved 47: ACC time (0–1000 corresponds to 0.0–100.0s) 47: DEC time (0–1000 corresponds to 0.0–100.0s) 49: Function parameter mapping (PZD2—PZD12 correspond to P14.49—P14.59) P15.13 Sent PZD2 0–67 P15.14 Sent PZD3 0: Invalid 0 0 P15.15 Sent PZD4 1: Running frequency (x100, Hz) P15.16 Sent PZD5 2: Set frequency (x100, Hz) 0 0 P15.17 Sent PZD6 4: Output voltage (x1, V) P15.18 Sent PZD7 P15.19 Sent PZD8 P15.20 Sent PZD9 P15.21 Sent PZD10 P15.22 Sent PZD11 9: Linear speed of running (x1, RPM) P15.22 Sent PZD11 P15.23 Sent PZD11 P15.24 Sent PZD11 P15.25 Sent PZD11 P15.26 Sent PZD11 P15.27 Sent PZD11 P15.28 Sent PZD11			17: Low bit of position feedback (unsigned)		
1 and then to 0) 19–20: Reserved 21: Non-standard frequency reference 22: Pre torque setting (-3000—+3000, in which 1000 corresponds to 100.0% of the motor rated current) 23–25: Reserved 26: Encoder high bit 27: Encoder low bit 28–46: Reserved 47: ACC time (0–1000 corresponds to 0.0–100.0s) 47: DEC time (0–1000 corresponds to 0.0–100.0s) 49: Function parameter mapping (PZD2—PZD12 correspond to P14.49—P14.59) P15.13 Sent PZD2 0–67 P15.14 Sent PZD3 0: Invalid 0 0 P15.15 Sent PZD4 1: Running frequency (x100, Hz) P15.16 Sent PZD5 2: Set frequency (x100, Hz) P15.17 Sent PZD6 3: Bus voltage (x10, V) P15.18 Sent PZD7 P15.19 Sent PZD8 P15.20 Sent PZD9 P15.21 Sent PZD10 P15.22 Sent PZD11 P15.22 Sent PZD11 P15.23 Sent PZD11 P15.24 Sent PZD11 P15.25 Sent PZD11 P15.26 Sent PZD11 P15.27 Sent PZD11 P15.28 Sent PZD11 P15.29 Sent PZD11 P15.29 Sent PZD11 P15.20 Sent PZD11 P15.20 Sent PZD11 P15.20 Sent PZD11 P15.20 Sent PZD11 P15.20 Sent PZD11 P15.20 Sent PZD11 P15.21 Sent PZD11 P15.22 Sent PZD11 P15.23 Sent PZD11 P15.24 Sent PZD11 P15.25 Sent PZD11 P15.26 Sent PZD11 P15.27 Sent PZD11 P15.28 Sent PZD11			18: Position feedback setting flag (position		
19–20: Reserved 21: Non-standard frequency reference 22: Pre torque setting (-3000—+3000, in which 1000 corresponds to 100.0% of the motor rated current) 23–25: Reserved 26: Encoder high bit 27: Encoder low bit 28–46: Reserved 47: ACC time (0–1000 corresponds to 0.0–100.0s) 47: DEC time (0–1000 corresponds to 0.0–100.0s) 49: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59) P15.13 Sent PZD2 0–67 0 Corresponds 0 Corre			feedback can be set only after this flag is set to		
21: Non-standard frequency reference 22: Pre torque setting (-3000—+3000, in which 1000 corresponds to 100.0% of the motor rated current) 23–25: Reserved 26: Encoder high bit 27: Encoder low bit 28–46: Reserved 47: ACC time (0–1000 corresponds to 0.0–100.0s) 47: DEC time (0–1000 corresponds to 0.0–100.0s) 49: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59) P15.13 Sent PZD2 0–67 P15.14 Sent PZD3 0: Invalid 0 0 P15.15 Sent PZD4 1: Running frequency (x100, Hz) 0 P15.16 Sent PZD5 2: Set frequency (x100, Hz) 0 P15.17 Sent PZD6 2: Set frequency (x100, Hz) 0 P15.18 Sent PZD7 4: Output voltage (x10, V) 0 P15.19 Sent PZD8 6: Actual output torque (x10, %) 0 P15.20 Sent PZD10 8: Rotation speed of running (x1, RPM) 0 P15.22 Sent PZD11 9: Linear speed of running (x1, m/s) 0 P3-23-25: Pretorque setting (-3000—+3000, in which 10 in the course of the motor rated current current. 22: Pre torque setting (-3000—+3000, in which 1000 in the motor rated current current. 23–25: Reserved 426: Encoder high bit 27: Encoder logo. 47: ACC time (0–1000 corresponds to 0.0–100.00) 10: Ramp reference frequency (x100, Hz) 0 23–25: Reserved 47: ACC time (0–1000 corresponds to 0.0–100.00) 10: Ramp reference frequency (x100, Hz) 0 21: Ramp reference frequency (x100, Hz) 0 22: Set frequency (x100, Hz) 0 23-25: Reserved x100, Hz 0 24: ACC time (0–1000 corresponds to 0.0–100.00 25: ACC time (0–1000 corresponds to 0.0–100.00 26: ACU 10: ACC time (0–1000 corresponds to 0.0–100.00 27: ACU 10: ACC time (0–1000 corresponds to 0.0–100.00 28: Function parameter mapping (x100, Hz) 0 29: Linear speed of running (x1000) 0 20: ACC time (0–1000 corresponds to 0.0–100.00 20: ACC time (0–1000 cor			1 and then to 0)		
22: Pre torque setting (-3000—+3000, in which 1000 corresponds to 100.0% of the motor rated current) 23–25: Reserved 26: Encoder high bit 27: Encoder low bit 28–46: Reserved 47: ACC time (0–1000 corresponds to 0.0–100.0s) 47: DEC time (0–1000 corresponds to 0.0–100.0s) 49: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59) P15.13 Sent PZD2 0–67 P15.14 Sent PZD3 0: Invalid P15.15 Sent PZD4 1: Running frequency (×100, Hz) P15.16 Sent PZD5 2: Set frequency (×100, Hz) P15.17 Sent PZD6 3: Bus voltage (×10, V) P15.18 Sent PZD7 4: Output voltage (×1, V) P15.19 Sent PZD8 6: Actual output torque (×10, %) P15.20 Sent PZD9 7: Actual output torque (×10, %) P15.21 Sent PZD10 8: Rotation speed of running (×1, RPM) P15.22 Sent PZD11 9: Linear speed of running (×1, m/s) 10: Ramp reference			19–20: Reserved		
1000 corresponds to 100.0% of the motor rated current) 23–25: Reserved 26: Encoder high bit 27: Encoder low bit 28–46: Reserved 47: ACC time (0–1000 corresponds to 0.0–100.0s) 47: DEC time (0–1000 corresponds to 0.0–100.0s) 49: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59) P15.13 Sent PZD2			21: Non-standard frequency reference		
Current 23-25: Reserved 26: Encoder high bit 27: Encoder low bit 28-46: Reserved 47: ACC time (0-1000 corresponds to 0.0-100.0s) 47: DEC time (0-1000 corresponds to 0.0-100.0s) 49: Function parameter mapping (PZD2-PZD12 correspond to P14.49-P14.59) P15.13 Sent PZD2			22: Pre torque setting (-3000-+3000, in which		
23–25: Reserved 26: Encoder high bit 27: Encoder low bit 28–46: Reserved 47: ACC time (0–1000 corresponds to 0.0–100.0s) 47: DEC time (0–1000 corresponds to 0.0–100.0s) 49: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59) P15.13 Sent PZD2 0–67 0: Invalid 0 0 0 P15.14 Sent PZD3 0: Invalid 1: Running frequency (x100, Hz) 0: Sent PZD4 1: Running frequency (x100, Hz) 0: Sent PZD5 0: Sent PZD6 0: Sent PZD6 0: Sent PZD8 0: Sent PZD8 0: Sent PZD8 0: Sent PZD8 0: Sent PZD8 0: Sent PZD9 0: Sent P			1000 corresponds to 100.0% of the motor rated		
26: Encoder high bit 27: Encoder low bit 28–46: Reserved 47: ACC time (0–1000 corresponds to 0.0–100.0s) 47: DEC time (0–1000 corresponds to 0.0–100.0s) 49: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59) P15.13 Sent PZD2 0–67 0 0 P15.14 Sent PZD3 0: Invalid 0 0 P15.15 Sent PZD4 1: Running frequency (x100, Hz) 0 0 P15.16 Sent PZD5 2: Set frequency (x100, Hz) 0 0 P15.17 Sent PZD6 2: Set frequency (x100, Hz) 0 0 P15.18 Sent PZD7 3: Bus voltage (x10, V) 0 0 P15.19 Sent PZD8 4: Output voltage (x1, V) 0 0 P15.20 Sent PZD9 7: Actual output torque (x10, %) 0 0 P15.21 Sent PZD10 8: Rotation speed of running (x1, RPM) 0 0 P15.22 Sent PZD11 9: Linear speed of running (x1, m/s) 0 0			current)		
27: Encoder low bit 28–46: Reserved 47: ACC time (0–1000 corresponds to 0.0–100.0s) 47: DEC time (0–1000 corresponds to 0.0–100.0s) 49: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59) P15.13 Sent PZD2 0–67 P15.14 Sent PZD3 0: Invalid P15.15 Sent PZD4 1: Running frequency (x100, Hz) 0 0 P15.16 Sent PZD5 2: Set frequency (x100, Hz) 0 0 P15.17 Sent PZD6 3: Bus voltage (x10, V) P15.18 Sent PZD7 4: Output voltage (x1, V) P15.19 Sent PZD8 6: Actual output torque (x10, %) P15.20 Sent PZD10 8: Rotation speed of running (x1, RPM) P15.22 Sent PZD11 9: Linear speed of running (x1, m/s) 10: Ramp reference frequency			23–25: Reserved		
28–46: Reserved 47: ACC time (0–1000 corresponds to 0.0–100.0s) 47: DEC time (0–1000 corresponds to 0.0–100.0s) 49: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59) P15.13 Sent PZD2 0–67 P15.14 Sent PZD3 0: Invalid 0 0 0 P15.15 Sent PZD4 1: Running frequency (x100, Hz) 0 0 P15.16 Sent PZD5 2: Set frequency (x100, Hz) 0 0 P15.17 Sent PZD6 3: Bus voltage (x10, V) 0 0 0 P15.18 Sent PZD7 5: Output voltage (x1, V) 0 0 0 P15.19 Sent PZD8 6: Actual output torque (x10, %) 0 0 0 P15.20 Sent PZD9 7: Actual output power (x10, %) 0 0 0 P15.21 Sent PZD10 8: Rotation speed of running (x1, RPM) 0 0 0 P15.22 Sent PZD11 9: Linear speed of running (x1, m/s) 0 0			26: Encoder high bit		
47: ACC time (0–1000 corresponds to 0.0–100.0s) 47: DEC time (0–1000 corresponds to 0.0–100.0s) 49: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59) P15.13 Sent PZD2 0–67 P15.14 Sent PZD3 0: Invalid 0 0 0 P15.15 Sent PZD4 1: Running frequency (x100, Hz) 0 0 P15.16 Sent PZD5 2: Set frequency (x100, Hz) 0 0 P15.17 Sent PZD6 2: Set frequency (x100, Hz) 0 0 P15.18 Sent PZD7 4: Output voltage (x10, V) 0 0 0 P15.19 Sent PZD8 6: Actual output torque (x10, %) 0 0 P15.20 Sent PZD9 7: Actual output torque (x10, %) 0 0 P15.21 Sent PZD10 8: Rotation speed of running (x1, RPM) 0 0 P15.22 Sent PZD11 9: Linear speed of running (x1, m/s) 0 0			27: Encoder low bit		
0.0-100.0s 47: DEC time (0-1000 corresponds to 0.0-100.0s) 49: Function parameter mapping (PZD2-PZD12 correspond to P14.49-P14.59) P15.13 Sent PZD2 0-67 0 0 0 0 0 0 0 0 0			28-46: Reserved		
47: DEC time (0–1000 corresponds to 0.0–100.0s) 49: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59) P15.13 Sent PZD2 0–67 0 0 0 P15.14 Sent PZD3 0: Invalid 0 0 0 P15.15 Sent PZD4 1: Running frequency (x100, Hz) 0 0 P15.16 Sent PZD5 2: Set frequency (x100, Hz) 0 0 P15.17 Sent PZD6 3: Bus voltage (x10, V) 0 0 0 P15.18 Sent PZD7 4: Output voltage (x1, V) 0 0 0 P15.19 Sent PZD8 6: Actual output torque (x10, %) 0 0 0 P15.20 Sent PZD9 7: Actual output power (x10, %) 0 0 0 P15.21 Sent PZD10 8: Rotation speed of running (x1, RPM) 0 0 0 P15.22 Sent PZD11 9: Linear speed of running (x1, m/s) 0 0 0			47: ACC time (0-1000 corresponds to		
0.0–100.0s) 49: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59) P15.13 Sent PZD2 0–67 P15.14 Sent PZD3 0: Invalid 0 0 0 P15.15 Sent PZD4 1: Running frequency (x100, Hz) 0 0 P15.16 Sent PZD5 2: Set frequency (x100, Hz) 0 0 P15.17 Sent PZD6 3: Bus voltage (x10, V) 0 0 0 P15.18 Sent PZD7 4: Output voltage (x1, V) 0 0 0 P15.19 Sent PZD8 6: Actual output torque (x10, %) 0 0 P15.20 Sent PZD9 7: Actual output power (x10, %) 0 0 P15.21 Sent PZD10 8: Rotation speed of running (x1, RPM) 0 0 P15.22 Sent PZD11 9: Linear speed of running (x1, m/s) 0 0			0.0–100.0s)		
49: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59) P15.13 Sent PZD2			47: DEC time (0-1000 corresponds to		
P15.13 Sent PZD2 O-67 O O O O O O O O O O O O O O O O O O			0.0–100.0s)		
P15.13 Sent PZD2 0-67 0 0 P15.14 Sent PZD3 0: Invalid 0 0 P15.15 Sent PZD4 1: Running frequency (x100, Hz) 0 0 P15.16 Sent PZD5 2: Set frequency (x100, Hz) 0 0 P15.17 Sent PZD6 3: Bus voltage (x10, V) 0 0 P15.18 Sent PZD7 4: Output voltage (x1, V) 0 0 P15.19 Sent PZD8 5: Output current (x10, A) 0 0 P15.20 Sent PZD9 7: Actual output torque (x10, %) 0 0 P15.21 Sent PZD10 8: Rotation speed of running (x1, RPM) 0 0 P15.22 Sent PZD11 9: Linear speed of running (x1, m/s) 0 0			49: Function parameter mapping		
P15.14 Sent PZD3 0: Invalid 0 0 P15.15 Sent PZD4 1: Running frequency (x100, Hz) 0 0 P15.16 Sent PZD5 2: Set frequency (x100, Hz) 0 0 P15.17 Sent PZD6 3: Bus voltage (x10, V) 0 0 P15.18 Sent PZD7 4: Output voltage (x1, V) 0 0 P15.19 Sent PZD8 6: Actual output torque (x10, A) 0 0 P15.20 Sent PZD9 7: Actual output power (x10, %) 0 0 P15.21 Sent PZD10 8: Rotation speed of running (x1, RPM) 0 0 P15.22 Sent PZD11 9: Linear speed of running (x1, m/s) 0 0			(PZD2-PZD12 correspond to P14.49-P14.59)		
P15.15 Sent PZD4 1: Running frequency (x100, Hz) 0 0 P15.16 Sent PZD5 2: Set frequency (x100, Hz) 0 0 P15.17 Sent PZD6 3: Bus voltage (x10, V) 0 0 P15.18 Sent PZD7 4: Output voltage (x1, V) 0 0 P15.19 Sent PZD8 5: Output current (x10, A) 0 0 P15.20 Sent PZD9 7: Actual output torque (x10, %) 0 0 P15.21 Sent PZD10 8: Rotation speed of running (x1, RPM) 0 0 P15.22 Sent PZD11 9: Linear speed of running (x1, m/s) 0 0	P15.13	Sent PZD2	0–67	0	0
P15.16 Sent PZD5 2: Set frequency (x100, Hz) 0 0 P15.17 Sent PZD6 3: Bus voltage (x10, V) 0 0 P15.18 Sent PZD7 4: Output voltage (x1, V) 0 0 P15.19 Sent PZD8 5: Output current (x10, A) 0 0 P15.20 Sent PZD9 7: Actual output torque (x10, %) 0 0 P15.21 Sent PZD10 8: Rotation speed of running (x1, RPM) 0 0 P15.22 Sent PZD11 9: Linear speed of running (x1, m/s) 0 0	P15.14	Sent PZD3	0: Invalid	0	0
P15.16 Selft PZD5 3: Bus voltage (x10, V) 0 0 P15.17 Sent PZD6 4: Output voltage (x1, V) 0 0 P15.18 Sent PZD7 5: Output voltage (x1, V) 0 0 P15.19 Sent PZD8 6: Actual output torque (x10, %) 0 0 P15.20 Sent PZD9 7: Actual output power (x10, %) 0 0 P15.21 Sent PZD10 8: Rotation speed of running (x1, RPM) 0 0 P15.22 Sent PZD11 9: Linear speed of running (x1, m/s) 0 0	P15.15	Sent PZD4	1: Running frequency (x100, Hz)	0	0
P15.17 Sefft PZD6 4: Output voltage (x1, V) 0 0 0 0 0 0 0 0 0	P15.16	Sent PZD5	, , , ,	0	0
P15.18 Sent PZD7 5: Output current (x10, A) 0 0 0 0 0 0 0 0 0	P15.17	Sent PZD6	• , ,	0	0
P15.19 Sent PZD8 6: Actual output torque (x10, %) P15.20 Sent PZD9 7: Actual output power (x10, %) P15.21 Sent PZD10 8: Rotation speed of running (x1, RPM) P15.22 Sent PZD11 9: Linear speed of running (x1, m/s) 10: Ramp reference frequency	P15.18	Sent PZD7		0	0
P15.20 Sent PZD9 7: Actual output power (x10, %) P15.21 Sent PZD10 8: Rotation speed of running (x1, RPM) P15.22 Sent PZD11 9: Linear speed of running (x1, m/s) 10: Ramp reference frequency	P15.19	Sent PZD8	, , ,	0	0
P15.21 Sent PZD10 8: Rotation speed of running (x1, RPM) 0 0 P15.22 Sent PZD11 9: Linear speed of running (x1, m/s) 0 0	P15.20	Sent PZD9	, , , ,	0	0
P15.22 Sent PZD11 9: Linear speed of running (x1, KFW) 0	P15.21	Sent PZD10	, , ,	0	0
10: Ramp reference frequency			. ,		0
P15 23 Sent P7D12 10. Harry Islands Insequency n n			• • • • • • • • • • • • • • • • • • • •		
11: Fault code	P15.23	Sent PZD12	· · ·	0	0

Function	Name	Description	Default	Modify
code		12: Al1 (×100, V)		
		13: AI2 (×100, V)		
		14: Al3 input (x100, V)		
		15: HDIA frequency value (x100, kHz)		
		16: Terminal input status		
		17: Terminal imput status		
		18: PID reference (×100, %)		
		19: PID feedback (×100, %)		
		20: Motor rated torque		
		21: High bit of position reference (signed)		
		22: Low bit of position reference (unsigned)		
		23: High bit of position feedback (signed)		
		24: Low bit of position feedback (unsigned)		
		25: Status word 2		
		26: HDIB frequency value (×100, kHz)		
		27: PG card pulse feedback count high bit		
		28: PG card pulse feedback count low bit		
		29: Brake status		
		30: Non-standard status		
		31: Reserved		
		32: Encoder feedback frequency		
		(-Fmax–Fmax, unit: 0.01Hz)		
		33–51: Reserved		
		52: Module temperature		
		53: U-phase current transient value		
		54: V-phase current transient value		
		55: W-phase current transient value		
		56–57: Reserved		
		58: Load weight		
		59: Current peak value		
		60: Filter torque setting (filter after running)		
		61: MWh electromotive status (high bit)		
		62: kWh status (low bit) (x10, kWh)		
		63: MWh electricity generation status (high bit)		
		64: kWh electricity generation status (low bit)		
		(×10, kWh)		
		65: PG card pulse reference count high bit		
		66: PG card pulse reference count low bit		
		67: Function parameter mapping		

Function code	Name	Description	Default	Modify
		(PZD2-PZD12 correspond to P14.60-P14.70)		
P15.25	DP communication timeout period	0.0–60.0s	1.0s	0
P15.26	CANopen communication timeout period	0.0–60.0s	1.0s	0
P15.27	CANopen communication baud rate	0–7 0: 1000K bps 1: 800K bps 2: 500K bps 3: 250K bps 4: 125K bps 5: 100K bps 6: 50K bps 7: 20K bps	3	©
P15.28	Master/slave CAN communication address	0–127	1	0
P15.29	Master/slave CAN communication baud rate	0: 50K bps 1: 100K bps 2: 125K bps 3: 250K bps 4: 500K bps 5: 1M bps	2	0
P15.30	Master/slave CAN communication timeout period	0.0 (invalid)–60.0s	0.0s	0
P15.31	DeviceNET communication timeout period (reserved)	0.0–60.0s	1.0s	0
P15.32	Display node baud rate	0–65535	0	•
P15.33	Enabling polling	0–1	1	0
P15.34	Instance number of polling output	19–27 19: INVT VFD output 20: ODVA basic speed control output 21: ODVA extended speed control output 22: ODVA speed and torque control output 23: ODVA extended speed and torque control	19	0

Function code	Name	Description	Default	Modify
		output 24: INVT basic speed control output 25: INVT extended speed control output 26: INVT speed and torque control output 27: INVT extended speed and torque control output		
P15.35	Instance number of polling input	69–77 69: INVT VFD input 70: ODVA basic speed control input 71: ODVA extended speed control input 72: ODVA speed and torque control input 73: ODVA extended speed and torque control input 74: INVT basic speed control input 75: INVT extended speed control input 76: INVT speed and torque control input 77: INVT extended speed and torque control input	69	0
P15.36	Enabling status change/cycle	0–1	0	0
P15.37	Status change/cycle output instance selection	19–27 19: INVT VFD output 20: ODVA basic speed control output 21: ODVA extended speed control output 22: ODVA speed and torque control output 23: ODVA extended speed and torque control output 24: INVT basic speed control output 25: INVT extended speed control output 26: INVT speed and torque control output 27: INVT extended speed and torque control output	19	0
P15.38		69–77 69: INVT VFD input 70: ODVA basic speed control input 71: ODVA extended speed control input 72: ODVA speed and torque control input 73: ODVA extended speed and torque control input	69	0

Function code	Name	Description	Default	Modify
		 74: INVT basic speed control input 75: INVT extended speed control input 76: INVT speed and torque control input 77: INVT extended speed and torque control input 		
P15.39	Output length of component 19	8–32	32	0
P15.40	Input length of component 19	8–32	32	0
P15.41	BACnet communication mode (reserved)	0: P16.22 (I_M service) is valid. 1: P15.42 (Baud rate of BACnet_MSTP) is valid.	0	0
P15.42	Baud rate of BACnet_MSTP (reserved)	0–5	0	0
P15.43	Communication control word expression format	0-1 0: Decimal format 1: Binary format	0	0

Group P16—Communication expansion card 2 functions

Function code	Name	Description	Default	Modify
P16.02	Ethernet monitoring card IP address 1	0–255	192	0
P16.03	Ethernet monitoring card IP address 2	0–255	168	0
P16.04	Ethernet monitoring card IP address 3	0–255	0	0
P16.05	Ethernet monitoring card IP address 4	0–255	1	0
P16.06	Ethernet monitoring card subnet mask 1	0–255	255	0
P16.07	Ethernet monitoring card subnet mask 2	0–255	255	0
P16.08	Ethernet monitoring card subnet mask 3	0–255	255	0
P16.09	Ethernet monitoring card subnet mask 4	0–255	0	0
P16.10	Ethernet monitoring	0–255	192	0

Function code	Name	Description	Default	Modify
	card gateway 1			
P16.11	Ethernet monitoring card gateway 2	0–255	168	0
P16.12	Ethernet monitoring card gateway 3	0–255	0	0
P16.13	Ethernet monitoring card gateway 4	0–255	1	0
P16.14	Ethernet card monitoring variable address 1	0x0000-0xFFFF	0x0000	0
P16.15	Ethernet card monitoring variable address 2	0x0000-0xFFFF	0x0000	0
P16.16	Ethernet card monitoring variable address 3 (reserved)	0x0000-0xFFFF	0x0000	0
P16.17	Ethernet card monitoring variable address 4 (reserved)	0x0000-0xFFFF	0x0000	0
P16.18	Ethernet monitoring card communication timeout period (reserved)	0.0 (invalid)–60.0s	0.0	0
P16.19	EtherCAT synchronization cycle (reserved)	0–4 0: 250μs 1: 500μs 2: 1ms 3: 2ms 4: Reserved	2	0
P16.20	BACnet device No. high bit (reserved)	0-4194 Note: BACnet device No. range is 0- 4194303.	0	0
P16.21	BACnet device No. low bit (reserved)	0-999 Note: BACnet device No. range is 0- 4194303.	1	0

Function code	Name	Description	Default	Modify
P16.22	BACnet "I-Am" service selection (reserved)	0: Send at power-on 1: Send constantly	0	0
P16.23	BACnet communication timeout period (reserved)	0.0 (invalid)–60.0s	5.0s	0
P16.24	Time to identify expansion card in card slot 1	0.0-600.0s Note: The value 0.0 indicates that identification faults will not be detected.	0.0s	0
P16.25	Time to identify expansion card in card slot 2	0.0–600.0s Note: The value 0.0 indicates that identification faults will not be detected.	0.0s	0
P16.26	Time to identify expansion card in card slot 3	0.0-600.0s Note: The value 0.0 indicates that identification faults will not be detected.	0.0s	0
P16.27	Communication timeout period of expansion card in card slot 1	0.0-600.0s Note: The value 0.0 indicates disconnection faults will not be detected.	0.0s	0
P16.28	Communication timeout period of expansion card in card slot 2	0.0-600.0s Note: The value 0.0 indicates disconnection faults will not be detected.	0.0s	0
P16.29	Communication timeout period of expansion card in card slot 3	0.0-600.0s Note: The value 0.0 indicates disconnection faults will not be detected.	0.0s	0
P16.30	EtherCAT communication timeout time	0.0–60.0s	5.0s	0
P16.31	PROFINET communication timeout time	0.0–60.0s	5.0s	0
P16.32	Received PZD2	0–49	0	0
P16.33	Received PZD3	0: Invalid	0	0
P16.34	Received PZD4	1: Set frequency (0–Fmax, unit: 0.01Hz)	0	0

Function				
code	Name	Description	Default	Modify
P16.35	Received PZD5	2: PID reference (-1000–1000, in which 1000	0	0
P16.36	Received PZD6	corresponds to 100.0%)	0	0
P16.37	Received PZD7	3: PID feedback (-1000–1000, in which 1000	0	0
P16.38	Received PZD8	corresponds to 100.0%)	0	0
P16.39	Received PZD9	4: Torque setting (-3000–+3000, in which 1000	0	0
P16.40	Received PZD10	corresponds to 100.0% of the motor rated	0	0
P16.41	Received PZD11	current) 5: Setting of the upper limit of forward running	0	0
		frequency (0–Fmax, unit: 0.01Hz)		
		6: Setting of the upper limit of reverse running		
		frequency (0–Fmax, unit: 0.01Hz)		
		7: Upper limit of the electromotive torque		
		(0–3000, in which 1000 corresponds to 100.0%		
		of the motor rated current)		
		8: Upper limit of braking torque (0-3000, in		
		which 1000 corresponds to 100% of the motor		
		rated current)		
		9: Virtual input terminal command. Range:		
		0x000-0x3FF		
		10: Virtual output terminal command. Range:		
		0x00-0xFF		
		(RO4/RO3/Y3/Y2/RO2/RO1/HDO/Y1)		
P16.42	Received PZD12	11: Voltage setting (special for V/F separation)	0	0
		(0-1000, in which 1000 corresponds to 100%		
		of the motor rated voltage)		
		12: AO1 output setting 1 (-1000–1000, in which		
		1000 corresponds to 100.0%)		
		13: AO2 output setting 2 (-1000-1000, in which		
		1000 corresponds to 100.0%)		
		14: High bit of position reference (signed)		
		15: Low bit of position reference (unsigned)		
		16: High bit of position feedback (signed)		
		17: Low bit of position feedback (unsigned)		
		18: Position feedback setting flag (position		
		feedback can be set only after this flag is set to		
		1 and then to 0)		
		19–20: Reserved		
		21: Non-standard frequency reference		

Function code	Name	Description	Default	Modify
code		22: Pre torque setting (-3000-+3000, in which		
		1000 corresponds to 100.0% of the motor rated		
		current)		
		23–25: Reserved		
		26: Encoder high bit		
		27: Encoder low bit		
		28–46: Reserved		
		47: ACC time (0–1000 corresponds to		
		0.0–100.0s)		
		47: DEC time (0–1000 corresponds to		
		0.0–100.0s)		
		49: Function parameter mapping		
		(PZD2-PZD12 correspond to P14.49-P14.59)		
P16.43	Sent PZD2	0–67	0	0
P16.44	Sent PZD3	0: Invalid	0	0
P16.45	Sent PZD4	1: Running frequency (x100, Hz)	0	0
P16.46	Sent PZD5	2: Set frequency (x100, Hz)	0	0
P16.47	Sent PZD6	3: Bus voltage (x10, V)	0	0
P16.48	Sent PZD7	4: Output voltage (x1, V)	0	0
P16.49	Sent PZD8	5: Output current (×10, A)	0	0
P16.50	Sent PZD9	6: Actual output torque (x10, %)	0	0
P16.51	Sent PZD10	7: Actual output power (x10, %)	0	0
P16.52	Sent PZD11	8: Rotation speed of running (x1, RPM)	0	0
		9: Linear speed of running (x1, m/s)		
		10: Ramp reference frequency		
		11: Fault code		
		12: Al1 (×100, V)		
		13: Al2 (×100, V)		
		14: Al3 input (x100, V)		
		15: HDIA frequency value (×100, kHz)		
P16.53	Sent PZD12	16: Terminal input status	0	0
1 10.00	Ocht i ZD i Z	17: Terminal output status	O	0
		18: PID reference (×100, %)		
		19: PID feedback (×100, %)		
		20: Motor rated torque		
		21: High bit of position reference (signed)		
		22: Low bit of position reference (unsigned)		
		23: High bit of position feedback (signed)		
		24: Low bit of position feedback (unsigned)		

Function code	Name	Description	Default	Modify
		25: Status word 2		
		26: HDIB frequency value (×100, kHz)		
		27: PG card pulse feedback count high bit		
		28: PG card pulse feedback count low bit		
		29: Brake status		
		30: Non-standard status		
		31: Reserved		
		32: Encoder feedback frequency		
		(-Fmax–Fmax, unit: 0.01Hz)		
		33–51: Reserved		
		52: Module temperature		
		53: U-phase current transient value		
		54: V-phase current transient value		
		55: W-phase current transient value		
		56–57: Reserved		
		58: Load weight		
		59: Current peak value		
		60: Filter torque setting (filter after running)		
		61: MWh electromotive status (MSB)		
		62: kWh status (LSB) (*10,kWh)		
		63: MWh electricity generation status (MSB)		
		64: kWh electricity generation status (LSB)		
		(*10,kWh)		
		65: PG card pulse reference count high bit		
		66: PG card pulse reference count low bit		
		67: Function parameter mapping		
		(PZD2–PZD12 correspond to P14.60– P14.70)		
	EtherNet IP	0.0 (invalid)–60.0s		
P16.54	communication	When EtherNet IP communication fault occurs,	5.0s	0
1 10.04	timeout period	the VFD reports an EtherNet IP communication	0.00	O
	timeout period	fault (E-EIP).		
		0: Self adaptive		
	EtherNet IP	1: 100 M full duplex		
P16.55	communication rate	2: 100 M half duplex	0	0
	communication rate	3: 10 M full duplex		
		4: 10 M half duplex		
P16.56– P16.57	Reserved	0–65535	0	•
P16.58	Industrial Ethernet	0–255	192	0

communication card IP address 1 Industrial Ethernet communication card IP address 2 Industrial Ethernet communication card IP address 3 Industrial Ethernet communication card IP address 3 Industrial Ethernet communication card IP address 4 Industrial Ethernet communication card IP address 4 Industrial Ethernet communication card subnet mask 1 Industrial Ethernet communication card subnet mask 2 Industrial Ethernet communication card subnet mask 3 Industrial Ethernet communication card subnet mask 3 Industrial Ethernet communication card subnet mask 4 Industrial Ethernet communication card gateway 1 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 3 Industrial Ether	Function	Name	Description	Default	Modify
Card IP address 1	code		,		
Industrial Ethernet		communication			
P16.59 communication card IP address 2		card IP address 1			
card IP address 2 Industrial Ethernet communication card IP address 3 Industrial Ethernet communication card IP address 4 Industrial Ethernet communication card IP address 4 Industrial Ethernet communication card subnet mask 1 Industrial Ethernet communication card subnet mask 2 Industrial Ethernet communication card subnet mask 2 Industrial Ethernet communication card subnet mask 3 Industrial Ethernet communication card subnet mask 4 Industrial Ethernet communication card subnet mask 4 Industrial Ethernet communication card subnet mask 4 Industrial Ethernet communication card gateway 1 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card subnet mask 4 P16.70 Two-in-one card O-255 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Industrial Ethernet			
Industrial Ethernet communication card IP address 3 Industrial Ethernet communication card IP address 4 Industrial Ethernet communication card subnet mask 1 Industrial Ethernet communication card subnet mask 2 Industrial Ethernet communication card subnet mask 2 Industrial Ethernet communication card subnet mask 2 Industrial Ethernet communication card subnet mask 3 Industrial Ethernet communication card subnet mask 4 Industrial Ethernet communication card subnet mask 4 Industrial Ethernet communication card subnet mask 4 Industrial Ethernet communication card gateway 1 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card subnet mask 4 P16.60 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card gateway	P16.59	communication	0–255	168	0
P16.60 communication card IP address 3		card IP address 2			
Card IP address 3		Industrial Ethernet			
Industrial Ethernet communication card IP address 4 Industrial Ethernet communication card subnet mask 1 Industrial Ethernet communication card subnet mask 2 Industrial Ethernet communication card subnet mask 2 Industrial Ethernet communication card subnet mask 2 Industrial Ethernet communication card subnet mask 3 Industrial Ethernet communication card subnet mask 3 Industrial Ethernet communication card subnet mask 4 Industrial Ethernet communication card gateway 1 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card subnet mask 4 P16.70 Two-in-one card O: CAN master/slave Ethernet two-in-one card	P16.60	communication	0–255	0	0
P16.61 communication card IP address 4 Industrial Ethernet communication card subnet mask 1 Industrial Ethernet communication card subnet mask 2 Industrial Ethernet communication card subnet mask 2 Industrial Ethernet communication card subnet mask 3 Industrial Ethernet communication card subnet mask 3 Industrial Ethernet communication card subnet mask 4 Industrial Ethernet communication card subnet mask 4 Industrial Ethernet communication card gateway 1 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card subnet mask 4		card IP address 3			
card IP address 4 Industrial Ethernet communication card subnet mask 1 Industrial Ethernet communication card subnet mask 2 Industrial Ethernet communication card subnet mask 2 Industrial Ethernet communication card subnet mask 3 Industrial Ethernet communication card subnet mask 4 Industrial Ethernet communication card subnet mask 4 Industrial Ethernet communication card gateway 1 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card subnet mask 4 P16.70 Two-in-one card O: CAN master/slave Ethernet two-in-one card		Industrial Ethernet			
Industrial Ethernet communication card subnet mask 1	P16.61	communication	0–255	20	0
P16.62 communication card subnet mask 1 Industrial Ethernet communication card subnet mask 2 Industrial Ethernet communication card subnet mask 3 Industrial Ethernet communication card subnet mask 3 Industrial Ethernet communication card subnet mask 4 P16.65 communication card gateway 1 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card gateway 4 P16.70 Two-in-one card O: CAN master/slave Ethernet two-in-one card O		card IP address 4			
card subnet mask 1 Industrial Ethernet communication card subnet mask 2 Industrial Ethernet P16.64 communication card subnet mask 3 Industrial Ethernet P16.65 communication card subnet mask 4 Industrial Ethernet P16.66 communication card gateway 1 Industrial Ethernet P16.67 communication card gateway 2 Industrial Ethernet P16.68 communication card gateway 2 Industrial Ethernet P16.69 communication card subnet mask 4 P16.70 Two-in-one card O-255 O-255 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Industrial Ethernet			
Industrial Ethernet communication card subnet mask 2 Industrial Ethernet communication card subnet mask 3 Industrial Ethernet communication card subnet mask 3 Industrial Ethernet communication card subnet mask 4 Industrial Ethernet communication card gateway 1 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 3	P16.62	communication	0–255	255	0
P16.63 communication card subnet mask 2 Industrial Ethernet communication card subnet mask 3 Industrial Ethernet communication card subnet mask 4 Industrial Ethernet communication card subnet mask 4 Industrial Ethernet communication card gateway 1 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 3		card subnet mask 1			
card subnet mask 2 Industrial Ethernet P16.64 communication card subnet mask 3 Industrial Ethernet Communication card subnet mask 4 Industrial Ethernet Communication card gateway 1 Industrial Ethernet P16.67 communication card gateway 2 Industrial Ethernet P16.68 communication card gateway 3 Industrial Ethernet P16.69 communication card gateway 3 Industrial Ethernet Communication card gateway 3 Industrial Ethernet Communication card gateway 3 Industrial Ethernet Communication card gateway 3 Industrial Ethernet Communication card gateway 3 Industrial Ethernet Communication card gateway 3 Industrial Ethernet Communication Card subnet mask 4 P16.69 Two-in-one card O: CAN master/slave Ethernet two-in-one card		Industrial Ethernet			
Industrial Ethernet communication card subnet mask 3 Industrial Ethernet communication card subnet mask 4 P16.65 communication card subnet mask 4 Industrial Ethernet communication card gateway 1 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card subnet mask 4 P16.70 Two-in-one card 0: CAN master/slave Ethernet two-in-one card 0	P16.63	communication	0–255	255	0
P16.64 communication card subnet mask 3 Industrial Ethernet communication card subnet mask 4 P16.65 communication card subnet mask 4 Industrial Ethernet communication card gateway 1 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card subnet mask 4 P16.70 Two-in-one card 0: CAN master/slave Ethernet two-in-one card 0		card subnet mask 2			
card subnet mask 3 Industrial Ethernet Communication Card subnet mask 4 Industrial Ethernet Communication Card gateway 1 Industrial Ethernet Communication Card gateway 2 Industrial Ethernet Communication Card gateway 2 Industrial Ethernet Communication Card gateway 3 Industrial Ethernet Communication Card subnet mask 4 P16.70 Two-in-one card C: CAN master/slave Ethernet two-in-one card		Industrial Ethernet			
Industrial Ethernet communication card subnet mask 4 Industrial Ethernet P16.66 communication card gateway 1 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 2 Industrial Ethernet P16.68 communication card gateway 3 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card subnet mask 4 P16.70 Two-in-one card 0: CAN master/slave Ethernet two-in-one card 0	P16.64	communication	0–255	255	0
P16.65 communication card subnet mask 4 Industrial Ethernet communication card gateway 1 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card subnet mask 4 P16.70 Two-in-one card 0: CAN master/slave Ethernet two-in-one card 0		card subnet mask 3			
card subnet mask 4 Industrial Ethernet P16.66 communication 0–255		Industrial Ethernet			
Industrial Ethernet Communication O-255 192 O	P16.65	communication	0–255	0	0
P16.66 communication card gateway 1 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card subnet mask 4 P16.70 Two-in-one card 0: CAN master/slave Ethernet two-in-one card 0		card subnet mask 4			
card gateway 1 Industrial Ethernet communication card gateway 2 Industrial Ethernet P16.68 communication card gateway 3 Industrial Ethernet P16.69 communication card subnet mask 4 P16.70 Two-in-one card O: CAN master/slave Ethernet two-in-one card O O		Industrial Ethernet			
P16.67 Industrial Ethernet communication card gateway 2 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card subnet mask 4 P16.70 Two-in-one card 0: CAN master/slave Ethernet two-in-one card 0	P16.66	communication	0–255	192	0
P16.67 communication card gateway 2 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card gateway 3 Industrial Ethernet communication card subnet mask 4 P16.69 Two-in-one card 0: CAN master/slave Ethernet two-in-one card 0		card gateway 1			
card gateway 2 Industrial Ethernet P16.68 communication card gateway 3 Industrial Ethernet P16.69 communication card subnet mask 4 P16.70 Two-in-one card O: CAN master/slave Ethernet two-in-one card O O		Industrial Ethernet			
P16.68 Industrial Ethernet communication card gateway 3 Industrial Ethernet P16.69 communication communication card subnet mask 4 P16.70 Two-in-one card 0: CAN master/slave Ethernet two-in-one card 0	P16.67	communication	0–255	168	0
P16.68 communication card gateway 3 Industrial Ethernet communication card subnet mask 4 P16.70 Two-in-one card 0: CAN master/slave Ethernet two-in-one card 0		card gateway 2			
card gateway 3 Industrial Ethernet P16.69 communication 0–255 1 0 card subnet mask 4 P16.70 Two-in-one card 0: CAN master/slave Ethernet two-in-one card 0		Industrial Ethernet			
card gateway 3 Industrial Ethernet P16.69 communication 0–255 1 0 card subnet mask 4 P16.70 Two-in-one card 0: CAN master/slave Ethernet two-in-one card 0	P16.68	communication	0–255	0	0
P16.69 Industrial Ethernet communication 0–255 1 0 0 card subnet mask 4 Two-in-one card 0: CAN master/slave Ethernet two-in-one card 0 0		card gateway 3			
card subnet mask 4 Two-in-one card 0: CAN master/slave Ethernet two-in-one card 0					
card subnet mask 4 Two-in-one card 0: CAN master/slave Ethernet two-in-one card 0	P16.69	communication	0–255	1	0
P16.70 Two-in-one card 0: CAN master/slave Ethernet two-in-one card 0					
l P16.70 l			0: CAN master/slave Ethernet two-in-one card		
I WOLNIIU IIICIIIOU II. OAN IIIGSICI/SIGVE IGIU	P16.70	working method	1: CAN master/slave card	0	0

Function code	Name	Description	Default	Modify
		2: Ethernet card Note: If the parameter setting is changed, the change takes effect only after the VFD is restarted.		
P16.71	CAN data frame sending/receiving delay	When the two-in-one communication card working mode is 0, in the CAN data frame sending/receiving cycle, the time unit is 0.25ms. A greater parameter setting indicates longer CAN master/slave communication delay, but shorter Ethernet oscilloscope data delay indicates better oscilloscope effect. Shorter CAN master/slave communication delay indicates longer Ethernet oscilloscope data delay and worse oscilloscope effect. Adjust the parameter setting based on the number of slaves to obtain good oscilloscope effect when the master/slave communication is normal. Note: The parameter setting change takes effect after power-off and restart. Range: 3–20	5	0
P16.72	CW and SW selection	0x00–0x74 Ones place: CW and SW selection 0: Standard CW and SW 1: CW and SW 1 for dedicated applications 2: CW and SW for special CANopen 3: CW and SW 2 for dedicated applications 4: CW and SW 2 for special CANopen Tens place: Reserved	0x00	0
P16.73	Communication set ACC/DEC time selection	O: Non communication 1: PROFIBUSDP/CANopen communication 2: PROFIBUSNet or EtherNet IP communication	0	0
P16.77	Saving EtherCAT written function codes	0: Yes 1: No	0	0
P16.79	EtherCAT input pulse frequency	0x000–0x311 Ones place: Input pulse frequency selection	0x000	0

Function code	Name	Description	Default	Modify
	and other control	0: Input rotation speed unit is RPM		
	selection	1: Input rotation speed unit is plus/s		
		Tens place: P-channel pulse position value		
		source		
		0: First channel PG card		
		1: Second channel PG card		
		Hundreds place: 0x60BA probe function		
		selection		
		1: Increase value of probe 1		
		1: Reserved		
		2: P-channel position value of second channel		
		PG card		
		3: SSI feedback absolute position		
P16.80	EtherCAT slave node address	0–255	0	0
		0x0000–0x1121		
		Ones place: Special function 1		
		0: Response control word, with control mode		
		depending on PLC		
		1: Response control word, with control mode		
		depending on VFD		
		Tens place: Special function 2		
		0: PDO ACC time object address and DEC time		
		object address are 0x6083 and 0x6084		
	EtherCAT standard	1: PDO ACC time object address and DEC time		
P16.81	speed mode	object address are 0x6071 and 0x6072	0x0000	0
1 10.01	special function	2: PDO anti-sway rope length object address is	0,0000	O
	Special fullotion	0x6072		
		Hundreds place: Indicates whether P00.00		
		supports EtherCAT SDO modification		
		0: Yes		
		1: No		
		Thousands place: Feedback value of status		
		word 0x6041		
		0: User-defined status word (consistent with		
		GD350)		
		1: Received value of control word 0x6040		

Group P17—Status viewing

Function code	Name	Description	Default	Modify
P17.00	Set frequency	Displays the present set frequency of the VFD. Range: 0.00Hz–P00.03	50.00Hz	•
P17.01	Output frequency	Displays the present output frequency of the VFD. Range: 0.00Hz-P00.03	0.00Hz	•
P17.02	Ramp reference frequency	Displays the present ramp reference frequency of the VFD. Range: 0.00Hz–P00.03	0.00Hz	•
P17.03	Output voltage	Displays the present output voltage of the VFD. Range: 0–1200V	0V	•
P17.04	Output current	Displays the valid value of present output current of the VFD. Range: 0.0–5000.0A	0.0A	•
P17.05	Motor rotation speed	Displays the present motor rotation speed. Range: 0–65535RPM	0RPM	•
P17.06	Torque current	Displays the present torque current of the VFD. Range: -3000.0–3000.0A	0.0A	•
P17.07	Exciting current	Displays the present exciting current of the VFD. Range: -3000.0-3000.0A	0.0A	•
P17.08	Motor power	Displays the power of the present motor. 100% is relative to the rated motor power. A positive value indicates it is the motoring state while a negative value indicates it is in the generating state. Range: -300.0–300.0% (relative to the rated motor power)	0.0%	•
P17.09	Motor output torque	Displays the present output torque of the VFD. During forward running, a positive value indicates it is in the motoring state while a negative value indicates it is in the generating state. During reverse running, a positive value indicates it is in the generating state while a negative value indicates it is in the motoring state. Range: -250.0–250.0% (of the motor rated torque)	0.0%	•

Function code	Name	Description	Default	Modify
P17.10	Estimated motor frequency	Displays the estimated motor rotor frequency under the open-loop vector condition. Range: 0.00–P00.03	0.00Hz	•
P17.11	DC bus voltage	Displays the present DC bus voltage of the VFD. Range: 0.0-2000.0 V	oV	•
P17.12	Digital input terminal state	Displays the present digital input terminal state of the VFD. Range: 0x00–0x3F Corresponds to HDIB, HDIA, S4, S3, S2 and S1 respectively.	0x00	•
P17.13	Digital output terminal state	Displays the present digital output terminal state of the VFD. Range: 0x0–0xF The bits correspond to RO2, RO1, HDO, and Y1 respectively.	0	•
P17.14	Digital adjustment value	Displays the adjustment on the VFD made through the UP/DOWN terminal. Range: 0.00Hz–P00.03	0.00Hz	•
P17.15	Torque reference value	Relative to the percentage of the rated torque of the present motor, displaying the torque reference. Range: -300.0%—300.0% (of the motor rated current)	0.0%	•
P17.16	Linear speed	0–65535	0	•
P17.17	Reserved	0–65535	0	•
P17.18	Count value	0–65535	0	•
P17.19	Al1 input voltage	Displays the Al1 input signal. Range: 0.00–10.00V	0.00V	•
P17.20	Al2 input voltage	Displays the Al2 input signal. Range: -10.00V-10.00V	0.00V	•
P17.21	HDIA input frequency	Displays HDIA input frequency. Range: 0.000–50.000kHz	0.000kHz	•
P17.22	HDIB input frequency	Displays HDIB input frequency. Range: 0.000–50.000kHz	0.000kHz	•
P17.23	PID reference value	Displays the PID reference value. Range: -100.0–100.0%	0.0%	•

Function	Name	Description	Default	Modify
P17.24	PID feedback value	Displays the PID feedback value.	0.0%	
		Range: -100.0–100.0% Displays the power factor of the present motor.		
P17.25	Motor power factor	Range: -1.00–1.00	1.00	•
P17.26	Duration of this run	Displays the duration of this run of the VFD. Range: 0–65535min	0m	•
	Simple PLC and	Displays simple PLC and present step number		
P17.27	actual step of	of multi-step speed.	0	•
	multi-step speed	Range: 0–15		
P17.28	Motor ASR controller output	Displays the ASR controller output value under the vector control mode, relative to the percentage of rated motor torque. Range: -300.0%–300.0% (of the motor rated current)	0.0%	•
P17.29	Open-loop SM pole angle	Displays the initial identification angle of SM. Range: 0.0–360.0	0.0	•
P17.30	Phase compensation of SM	Displays the phase compensation of SM. Range: -180.0–180.0	0.0	•
P17.31	High-frequency superposition current of SM	0.0%–200.0% (of the motor rated current)	0.0	•
P17.32	Motor flux linkage	0.0%–200.0%	0.0%	•
P17.33	Exciting current reference	Displays the exciting current reference value under the vector control mode. Range: -3000.0–3000.0A	0.0A	•
P17.34	Torque current reference	Displays the torque current reference value under the vector control mode. Range: -3000.0–3000.0A	0.0A	•
P17.35	AC incoming current	Displays the valid value of incoming current on AC side. Range: 0.0–5000.0A	0.0A	•
P17.36	Output torque	Display output torque. During forward running, a positive value indicates it is in the motoring state while a negative value indicates it is in the generating state. During reverse running, a positive value	0.0Nm	•

Function				
code	Name	Description	Default	Modify
		indicates it is in the generating state while a		
		negative value indicates it is in the motoring		
		state.		
		Range: -3000.0Nm-3000.0Nm		
P17.37	Motor overload count value	0–65535	0	•
P17.38	Process PID output	-100.0%—100.0%	0.00%	•
	Function codes in			
P17.39	parameter	0.00–99.00	0.00	•
	download error			
		Ones place: Control mode		
		0: Vector 0		
		1: Vector 1		
		2: Space voltage vector control		
		3: Closed-loop vector control		
		Tens place: Control status		
P17.40	Motor control mode	•	0x2	
1 17.40	Wotor control mode	1: Torque control	UXZ	
		2: Position control		
		Hundreds place: Motor number 0: Motor 1		
		1: Motor 2		
		2: Motor 3		
P17.41	Electromotive	0.0%-300.0% (of the motor rated current)	180.0%	•
	torque upper limit			
P17.42	Braking torque upper limit	0.0%–300.0% (of the motor rated current)	180.0%	•
	Forward rotation			
P17.43	upper-limit	0.00Hz-P00.03	50.00Hz	
F17.43	frequency in torque	0.00H2=F00.03	30.00HZ	•
	control			
	Reverse rotation			
P17.44	upper-limit	0.00Hz-P00.03	50.00Hz	
	frequency in torque	0.001 12 1 00.00	30.00112	
	control			
	Inertia			
P17.45	compensation	-100.0%—100.0%	0.0%	•
	torque			

Function code	Name	Description	Default	Modify
P17.46	Friction compensation torque	-100.0%—100.0%	0.0%	•
P17.47	Motor pole pairs	0–65535	0	•
P17.48	VFD overload count value	0–65535	0	•
P17.49	Frequency set by A source	0.00Hz-P00.03	0.00Hz	•
P17.50	Frequency set by B source	0.00Hz-P00.03	0.00Hz	•
P17.51	PID proportional output	-100.0%–100.0%	0.00%	•
P17.52	PID integral output	-100.0%—100.0%	0.00%	•
P17.53	PID differential output	-100.0%–100.0%	0.00%	•
P17.54	Present proportional gain	0.00–100.00%	0.00%	•
P17.55	Present integral gain	0.00-10.00s	0.00s	•
P17.56	Present differential time	0.00-10.00s	0.00s	•
P17.57	Present terminal status in multi-step speed setting	0x0-0xF	0x0	•
P17.58	High bits in VFD power generated	0–65535kWh (*1000)	0kWh	•
P17.59	Low bits in VFD power generated	0.0–999.9kWh	0.0kWh	•
P17.60	SSI encoder present position low bit	0–65535	0	•
P17.61	SSI encoder present position high bit	0–65535	0	•
P17.62	SSI locating process deviation	-32768–32768	0	•
P17.63	SSI locating final deviation	-32768–32768	0	•

	nction ode	Name	Description	Default	Modify
P1	17.64	· · · · · · · · · · · · · · · · · ·	0–65535 Displays ten times the present feedback value.	0	•
P1	17.65	communication	0-65535 Displays ten times the communication giving value.	0	•

Group P18—Status viewing in closed-loop control

Function code	Name	Description	Default	Modify
P18.00	Actual frequency of encoder	Used to indicate the actual-measured encoder frequency. The value of forward running is positive; the value of reverse running is negative. Range: -999.9–3276.7Hz Note: P18.00 is only displayed in V/F and closed-loop modes. In open loop mode, it is	0.0Hz	•
		not displayed.		
P18.01	Encoder position count value	Encoder count value, quadruple frequency. Range: 0–65535	0	•
P18.02	Encoder Z pulse count value	Corresponding count value of encoder Z pulse. Range: 0–65535	0	•
P18.03		It is cleared after stop. Setting range: 0–30000	0	•
P18.04		It is cleared after stop. Range: 0–65535	0	•
P18.05		It is cleared after stop. Setting range: 0–30000	0	•
P18.06	Low bit of position feedback value	It is cleared after stop. Range: 0–65535	0	•
P18.07	Position deviation	Deviation between the reference position and actual running position. Setting range: -32768–32767	0	•
P18.08	Position of position reference point	Position of reference point of Z pulse when the spindle stops accurately Range: 0–65535	0	•
P18.09	Present position setting of spindle	Present position setting when the spindle stops accurately. Setting range: 0–359.99	0.00	•

Function code	Name	Description	Default	Modify
P18.10	Present position when spindle stops accurately	Present position when spindle stops accurately Range: 0–65535	0	•
P18.11	Encoder Z pulse direction	Z pulse direction display. When the spindle stops accurately, there may be a couple of pulses' error between the position of forward and reverse orientation, which can be eliminated by adjusting Z pulse direction of P20.02 or exchanging phase AB of encoder. 0: Forward 1: Reverse	0	•
P18.12	Encoder Z pulse angle	Reserved. Setting range: 0.00–359.99	0.00	•
P18.13	Encoder Z pulse error times	Reserved. Range: 0–65535	0	•
P18.14	High bit of encoder pulse count value	Encoder pulse count value. The count value is accumulated only if the VFD is powered on. Range: 0–65535	0	•
P18.15	Low bit of encoder pulse count value	Encoder pulse count value. The count value is accumulated only if the VFD is powered on. Range: 0–65535	0	•
P18.16	Speed measured by main control board	-3276.8–3276.7Hz	0.0Hz	•
P18.17	Pulse command frequency	The pulse command (A2/B2 terminal) is converted to the set frequency, and it is valid under the pulse position mode and pulse speed mode. Range: -3276.8–3276.7Hz	0.0Hz	•
P18.18	Pulse command feedforward	The pulse command (A2/B2 terminal) is converted to the set frequency, and it is valid under the pulse position mode and pulse speed mode. Range: -3276.8–3276.7Hz	0.0Hz	•
P18.19	Position regulator output	Position regulator output frequency in position control. Range: -327.68–327.67Hz	0.00Hz	•
P18.20	Count value of	Count value of resolver	0	•

Function code	Name	Description	Default	Modify
	resolver	Range: 0-65535		
P18.21	Resolver angle	Pole position angle read by the resolver-type encoder. Setting range: 0.00–359.99	0.00	•
P18.22	Closed-loop SM pole angle	Present pole position. Setting range: 0.00–359.99	0.00	•
P18.23	SW 2	0–65535	0	•
P18.24	High-order bit of count value of pulse reference	Indicates the pulse command (A2, B2) count value. The count value is accumulated only if the VFD is powered on. Range: 0–65535	0	•
P18.25	Low-order bit of count value of pulse reference	Indicates the pulse command (A2, B2) count value. The count value is accumulated only if the VFD is powered on. Range: 0–65535	0	•
P18.26	PG card detected speed	-3276.8–3276.7Hz	0.0Hz	•
P18.27	Encoder UVW sectors	0–7	0	•
P18.28	Encoder PPR display	0–65535	0	•
P18.29	Angle compensation value of SM	-180.0–180.0	0.0	•
P18.30	Z pulse angle of SM	0.00–655.35	0	•
P18.31	Z pulse value of pulse reference	0–65535	0	•
P18.32	Main control board measured value of pulse reference	-3276.8–3276.7Hz	0.0Hz	•
P18.33	PG card measured value of pulse reference	-3276.8–3276.7Hz	0.0Hz	•
P18.34	Present encoder filter width	0–63	0	•
P18.35	8K test duration	0–65535	0	•

Function code	Name	Description	Default	Modify
	2nd PG card			
P18.36	feedback pulse low	0–65535	0	•
	bit			
	2nd PG card			
P18.37	P-channel Z-pulse	0–65535	0	•
	position			
	2nd PG card	0–65535	0	
P18.38	P-channel position			
F 10.30	accumulative pulse			
	feedback high bit			
P18.39	2nd PG card			
	P-channel position	0–65535	0	
	accumulative pulse	0-0000	U	
	feedback low bit			

Group P19—Expansion card status viewing

Function code	Name	Description	Default	Modify
P19.00	Type of expansion	0–65535	0	•
1 10.00	card at slot 1	0: No card	Ů	
D40.04	Type of expansion	1: PLC card	0	
P19.01	card at slot 2	2: I/O card 1	0	•
		3: Incremental PG card		
		4: Incremental PG card with UVW		
		5: Ethernet		
		6: DP		
		7: Reserved		
		8: Resolver PG card		
		9: CANopen communication card		
	T	10: WIFI/4 G card		
P19.02	Type of expansion	11: PROFINET communication card	0	•
	card at slot 3	12: Sine-cosine PG card without CD signals		
		13: Sine-cosine PG card with CD signals		
		14: Absolute encoder PG card		
		15: CAN master/slave communication card		
		16: Modbus/Modbus TCP communication card		
		17: EtherCAT		
		18: BACnet		
		19: DeviceNet communication card		

Function	Name	Description	Default	Modify
code		·		,
		20: I/O card 2 for hoisting		
		21: EtherNet IP card		
		22: MECHATROLINK communication card		
		23: Reserved		
		24: CAN-NET two-in-one communication card		
		25: Reserved		
		26: PN-NET two-in-one communication card		
		27–31: Reserved		
		32: SSI encoder card		
		33–65535: Reserved		
	Software version of			
P19.03	expansion card at	0.00–655.35	0.00	•
	slot 1			
	Software version of			
P19.04	expansion card at	0.00-655.35	0.00	•
	slot 2			
	Software version of			
P19.05	expansion card at	0.00-655.35	0.00	•
	slot 3			
	Terminal input			
P19.06	status of I/O card	0x0000–0xFFFF	0x0000	•
	Terminal output			
P19.07	status of I/O card	0x0000–0xFFFF	0x0000	•
	Al3 input voltage of			
P19.09	I/O card	0.00–10.00V	0.00V	•
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0x0000-0xFFFF		
	Communication	Specifies the control word that the		
P19.15	card control word	PROFIBUS-DP/CANopen/PROFINET/EtherCA	0x0000	•
		T card sends to the VFD during communication.		
		0x0000-0xFFFF		
		Specifies the status word that the VFD returns		
P19.16	VFD status word	to the	0x0000	•
		PROFIBUS-DP/CANopen/PROFINET/EtherCA		
1		T card during communication.		
	E0	<u> </u>		
P19.17	Ethernet monitoring	0–65535	0	•
	variable 1			
P19.18	Ethernet monitoring	0–65535	0	•

Function code	Name	Description	Default	Modify
	variable 2			
P19.19	Ethernet monitoring variable 3	0–65535 (Fixed to the speed loop rotation reference variable)	0	•
P19.20	Ethernet monitoring variable 4	0–65535 (Fixed to the speed loop rotation feedback variable)	0	•
P19.21	EtherCAT state machine	0-8 0: Reserved 1: Initialization 2: Pre-operation 3: Reserved 4: Safe running 5-7: Reserved 8: Operation	0	•

Group P20-Encoder of motor 1

Function code	Name	Description	Default	Modify
P20.00	Encoder type display	0: Incremental encoder 1: Resolver-type encoder 2: Sin/Cos encoder 3: Endat/SSI absolute encoder	0	•
P20.01	Encoder pulse number	Number of pulses generated when the encoder revolves for one turn. Setting range: 0–16000	1024	0
P20.02	Encoder direction	Ones place: AB direction 0: Forward 1: Reverse Tens place: Z pulse direction (reserved) 0: Forward 1: Reverse Hundreds: CD/UVW pole signal direction 0: Forward 1: Reverse	0x000	©
P20.03	Encoder disconnection fault detection time	Specifies the detection time of encoder disconnection fault (ENC1O). Setting range: 0.0–10.0s	2.0s	0
P20.04	Encoder reversal fault detection time	Specifies the detection time of encoder reversal fault (ENC1D). Setting range: 0.0–100.0s	0.8s	0

Function code	Name	Description	Default	Modify
P20.05	Filter times of encoder detection	Setting range: 0x00–0x99 Ones place: Low-speed filter time, corresponding to 2^(0–9)×125µs Tens place: High-speed filter times, corresponding to 2^(0–9)×125µs	0x33	0
P20.06	Speed ratio between encoder mounting shaft and motor	You need to set the function parameter when the encoder is not installed on the motor shaft and the drive ratio is not 1. Setting range: 0.001–65.535	1.000	0
P20.07	Control parameters of SM	0x0000–0xFFFF Bit 0: Enable Z-pulse calibration Bit 1: Enable encoder angle calibration Bit 2: Enable SVC speed measurement Bit 3–Bit 5: Reserved Bit 6: Enable the CD signal calibration Bit7: Reserved Bit 8: Do not detect encoder faults during autotuning Bit 9: Enable pulse detection optimization Bit 10: Enable the initial Z pulse calibration optimization Bit 12: Clear the Z pulse arrival signal after stop bit13: Reserved bit14: Detect Z pulse after one rotation bit15: Reserved	0x0007	0
P20.08	Enable Z pulse offline detection	0x00–0x11 Ones place: Z pulse detection 0: No detection 1: Enable Tens place: UVW pulse detection (for SM) 0: No detection 1: Enable	0x10	0
P20.09	Initial angle of Z pulse	Relative electric angle between the encoder Z pulse and the motor pole position. Setting range: 0.00–359.99	0.00	0
P20.10	Pole initial angle	Relative electric angle between the encoder position and the motor pole position. Setting range: 0.00–359.99	0.00	0

Function				
code	Name	Description	Default	Modify
P20.11	Initial pole angle autotuning	Range: 0–3 1: Rotary autotuning (DC braking) 2: Static autotuning (suitable for resolver-type encoder, sin/cos with CD signal feedback) 3: Rotary autotuning (initial angle identification) The pole initial angle obtained through rotary autotuning (DC braking) is accurate. Rotary autotuning 1 is recommended in most cases, in which the motor needs to be decoupled from the load or the motor load is light.	0	©
P20.12	Speed measurement optimization selection	0: No optimization 1: Optimization mode 1 2: Optimization mode 2	1	0
P20.13	CD signal zero offset gain	0–65535	0	0
P20.14	Encoder type selection	0x00–0x11 Ones place: Incremental encoder 0: Without UVW 1: With UVW Tens place: Sin/Cos encoder 0: without CD signal 1: with CD signal	0x00	©
P20.15	Speed measurement mode	O: Measuring speed by PG card/Measuring height by HDI 1: Measuring locally through HDIA and HDIB. Only the 24V incremental encoders are supported. 2: Pulses are obtained through CANopen or PROFIBUS DP communication to measure the speed. 3: Pulses are obtained through PROFINET or EtherNet IP communication to measure the speed. Note: HDI height measuring is implemented through the HDIA and HDIB and supports only incremental 24V encoders.	0	0
P20.16	Frequency division	· ·	0	0

Eumatia:				
Function code	Name	Description	Default	Modify
	coefficient	When the function parameter is set to 0 or 1,		
		frequency division of 1:1 is implemented.		
		0x0000-0xFFFF		
		Bit 0: Enable encoder input filter		
		0: Do not filter		
		1: Filter		
		Bit 1: Encoder signal filter mode		
		0: Self-adaptive filter		
		1: Use P20.18 as the filter parameter		
		Bit 2: Indicates whether to enable encoder		
		P-channel frequency-division output filter		
		0: Do not filter		
		1: Filter		
	Pulse filter handling selection	Bit 3: Indicates whether to enable filter for pulse		
		reference F-channel frequency-division output		
P20.17		0: Do not filter	0x0033	0
		1: Filter		
		Bit 4: Indicates whether to enable pulse		
		reference F-channel filter		
		0: Do not filter		
		1: Filter		
		Bit 5: Pulse reference F-channel filter mode		
		0: Self-adaptive filter		
		1: Use P20.19 as the filter parameter		
		Bit 6: Frequency-divided output source		
		selection (valid only for incremental encoders)		
		0: Encoder signals		
		1: Pulse reference signals		
		Bit 7-Bit 15: Reserved		
	Encoder P-channel	0–63		
P20.18	filter width	The filter time is P20.18×0.25µs. The value 0 or	2	0
	iliter width	1 indicates 0.25μs.		
	Pulse reference	0–63		
P20.19	F-channel filter	The filter time is P20.19×0.25µs. The value 0	2	0
	width	or 1 indicates 0.25µs.		
P20.20	F-channel pulse	0–16000	1024	0
1 20.20	reference PPR	0 10000	1024	
P20.21	Enabling SM angle	0–1	0	0

Function code	Name	Description	Default	Modify
	compensation			
P20.22	Frequency point of speed measurement mode switchover	0–630.00Hz Note: Valid only when P20.12 =0.	1.00Hz	0
P20.23	Angle compensation coefficient	-200.0–200.0%	100.0%	0
P20.24	Motor pole pairs in initial pole angle autotuning	1–128	2	0
P20.25	SSI encoder resolution low bit	0–20	16	0
P20.26	SSI encoder resolution high bit	0–20	8	0
P20.27	SSI data format	0x000–0x111 Ones place: Reserved Tens place: Binary/Gray code selection for transmission type 0: Gray code parsing 1: Binary parsing Hundreds place: Reserved	0x000	0
P20.28	SSI data shift	0–63 When it is less than 32, it is right shift data. When it is greater than 32, it is left shift data (P20.28–31)	0	0
P20.29	SSI card protocol	O: Standard protocol 1: Fully closed-loop protocol Note: The parameter change takes effect after power-off and restart.	1	0

Group P21—Position control

Function code	Name	Description	Default	Modify
P21.00		0x0000–0x7321 Ones place: Control mode selection (only for closed-loop vector control) 0: Speed control	0x0000	0

Function code	Name	Description	Default	Modify
5545		1: Position control		
		Tens place: Position command source		
		0: Pulse train. The pulse giving signals from PG		
		card terminals A2 and B2 are used for position		
		control.		
		1: Digital position, using the setting of P21.17		
		for position control, while the positioning mode		
		can be set through P21.16.		
		2: Positioning of photoelectric switch during		
		stop. When a terminal receives a photoelectric		
		switch signal (terminal function 43 selected),		
		the VFD starts positioning for stop, and the stop		
		distance can be set through P21.17.		
		Hundred place: Position feedback source		
		0: Encoder signals		
		1: F-channel pulse of PG1		
		2: P-channel pulse of PG2		
		3: SSI signal of PG2		
		Thousands place: Servo mode (reserved)		
		0: No deviation		
		1: With deviation		
		Bit1: Enable servo		
		0: Disable (The servo can be enabled by		
		terminals.)		
		1: Enable		
		Bit 2-Bit 7: Reserved		
		Note: In the pulse string or spindle		
		positioning mode, the VFD enters the servo		
		operation mode when there is a valid servo		
		enabling signal. If there is no servo enabling		
		signal, the VFD enter the servo operation		
		mode only after it receives a forward		
		running or reverse running command.		
		Ones place: Pulse mode		
	Pulse command	0: A/B quadrature pulse; A leads B		
P21.01	mode	1: A: PULSE, B:SIGN	0x0000	0
	mode	If channel B is of low electric level, the edge		
		counts up; if channel B is of high electric level,		

Function code	Name	Description	Default	Modify
code		the edge counts down. 2: A: Positive pulse. Channel A is positive pulse, and channel B needs no wiring. 3: A/B dual-channel pulse. Channel A pulse edge counts up, but channel B pulse edge counts down. Tens place: Pulse direction Bit 0: Pulse forward direction setting 0: Forward 1: Reverse Bit 1: Pulse direction set by running direction 0: Disable. At this time, bit 0 is valid. 1: Enable Hundreds place: Frequency multiplication selection for pulse +direction (reserved) 0: No frequency multiplication 1: Frequency multiplication Thousands place: Pulse control selection Bit 0: Pulse filter selection 0: Inertia filter 1: Moving average filter Bit 1: Overspeed control 0: No control		
P21.02	Position loop gain 1	Control The two automatic position regulator (APR)	3.00	0
	Position loop gain 2	gains are switched based on the switching mode set through P21.04. When the spindle orientation function is used, the gains are switched automatically, regardless of the setting of P21.04. P21.03 is used for dynamic running, and P21.02 is used for maintaining the locked state. Setting range: 0.00–40.00	3.00	0
P21.04	Position loop gain switchover mode	Used to select the mode for switching between position loop gains. To use torque command-based switching, you need to set P21.05; and to use speed command-based switching, you need to set	0	0

Function code	Name	Description	Default	Modify
		P21.06.		
		0: No switchover		
		1: Torque command		
		2: Speed command		
		3–5: Reserved		
P21.05	Position gain switchover threshold in torque command	0.0–100.0% (of the motor rated torque)	10.0%	0
P21.06	Position gain switchover threshold in speed command	0.0–100.0% (of the motor rated speed)	10.0%	0
P21.07	Smooth filter coefficient for gain switchover	Smooth filter coefficient for APR gain switchover. Setting range: 0–15	5	0
P21.08	Position regulator output limit	Position regulator output limit value. When the output limit is 0, the position regulator is invalid, and no position control can be performed, however, speed control is valid. Setting range: 0.0–100.0% (of max. output frequency P00.03)	20.0%	0
P21.09	Positioning completion zone	When the position deviation is less than P21.09, and the duration is greater than P21.10, positioning completion signal will be outputted. Setting range: 0–1000	10	0
P21.10	Detection time for positioning completion	0.0–1000.0ms	10.0ms	0
P21.11	Numerator of position command ratio	Electronic gear ratio, used to adjust the corresponding relation between position command and actual running displacement. Setting range: 1–65535	1000	0
P21.12	Denominator of position command ratio	Setting range: 1–65535	1000	0
P21.13	Position	0.00–120.00%	100.00%	0

Function code	Name	Description	Default	Modify
	feedforward gain	For pulse string reference only (position control)		
P21.14	Position feedforward filter time constant	0.0–3200.0ms For pulse string reference only (position control)	3.0ms	0
P21.15	Position command filter time constant	Position feedforward filter time constant during the pulse string positioning. 0.0–3200.0ms	0.0ms	0
P21.16	Digital positioning mode	Bit 0: Positioning mode selection 0: Relative position 1: Absolute position (Origin mode. This function is reserved.) Bit 1: Cyclic positioning setting. You can enable positioning through a terminal (function 55) or choose automatic cyclic positioning. Terminals support only the enabling of continuous positioning, and automatic cyclic positioning can be set to cyclic positioning or reciprocating positioning through bit 2 of P21.16. 0: Terminal-based cyclic positioning 1: Automatic cyclic positioning 1: Automatic cyclic positioning bit2: Cyclic mode 0: Continuous 1: Reciprocating (support the automatic cyclic positioning) Bit 3: P21.17 digital setting mode. You can select incremental or position type. The incremental type indicates that P21.17 needs to be conducted again after each positioning is enabled. When the position reference bit command is enabled, the displacement is set through P21.17. When P21.17 is changed, new position is be positioned automatically. 0: Incremental 1: Position type (do not support the continuous mode) bit4: Origin searching mode 0: Search for the origin only for once 1: Search for the origin in every time of running bit5: Origin calibration mode 0: Calibration in real time 1: One-time calibration	0	0

Function	Name	Description	Default	Modify
code		Dis C. Danisianian annulation ainmal antique Van		
		Bit 6: Positioning completion signal setting. You		
		can set the positioning completion signal in the		
		pulse or electrical level form. The positioning		
		completion signal is valid in the positioning completion signal holding time set in P21.25.		
		Valid in the positioning completion signal		
		holding time (P21.25)		
		1: Always valid		
		Bit 7: First positioning setting. You can set		
		whether the first positioning is performed when		
		a running command is received. If no, the first		
		positioning is performed only after the		
		positioning enabling terminal or automatic		
		cyclic positioning is enabled.		
		0: Invalid		
		1: Valid		
		Bit 8: Positioning enabling signal setting (for		
		terminal-based cyclic positioning). In the pulse		
		form, after positioning is completed or in the		
		first positioning, the jump edge of the		
		positioning enabling terminal needs to be		
		detected for performing positioning. In the		
		electrical level mode, after positioning is		
		completed or in the first positioning, positioning		
		is performed after it is detected that the		
		positioning enabling terminal is switched on.		
		0: Pulse signal		
		1: Electrical level signal		
		bit 9: Position source		
		0: PROFIBUS/CANopen/EtherCAT		
		communication (when P21.17=0) or P21.17		
		(P21.17≠0)		
		1: Reserved		
		Bit 10: Indicates whether to save encoder pulse		
		count value at power failure		
		0: No		
		1: Yes		
		bit11: Indicates whether to save incremental		
		position during power outage		
		0: No		
		1: Yes		

Function code	Name	Description	Default	Modify
	Name	Description Bit 12–Bit 13: Positioning curve selection 0: Straight line 1: S curve 2–3: Reserved Bit 14: Indicates whether to keep 0Hz output within the time specified by P21.25 after positioning completes. 0: No 1: Yes Bit 15: Calculation insertion/interrupt selection during positioning 0: Do not support changing the target speed or position. 1: Support changing the target speed or	Default	Modify
P21.17	Position set in digital mode	position. Used to set the position for digital positioning. Actual position=P21.17×P21.11/P21.12 0-65535 (Unit: tenfold)	0	0
P21.18	Positioning speed setting	0: Set by P21.19 1: Al1 2: Al2 3: Al3 4: High-speed pulse HDIA 5: High-speed pulse HDIB 6: EtherCAT communication	0	0
P21.19	Positioning speed set in digital mode	0–100.0% (of the max. frequency)	20.0%	0
P21.20	Positioning ACC time	Used to set the ACC/DEC time in the positioning process.	3.00s	0
P21.21	Positioning DEC time	Positioning ACC time means the time needed if the VFD speeds up from 0Hz to the max. output frequency (P00.03). Positioning DEC time means the time needed if the VFD speeds down from the max. output frequency (P00.03) to 0Hz. Setting range of P21.20: 0.01–300.00s Setting range of P21.21: 0.01–300.00s	3.00s	0
P21.22	Positioning holding time	Used to se the holding time after the destination position is reached. Setting range: 0.000–60.000s	0.100s	0

Function code	Name	Description	Default	Modify
P21.23	Origin searching speed	0.00–50.00Hz	2.00Hz	0
P21.24	Origin bias	0–65535	0	0
P21.25	Positioning completion signal holding time	Time for holding the positioning completion signal. This parameter is also valid for the positioning in spindle orientation. Setting range: 0.000–60.000s	0.200s	0
P21.26	Pulse superposition	P21.26: 0–65535	0	0
P21.27	Pulse superposition rate	P21.27: 0–3000.0/ms The function is valid in the pulse speed reference (P00.06=12) or pulse position mode	8.0/ms	0
P21.28	ACC/DEC time after pulse inhibition	(P21.00=1). 1. Input terminal function 68 (Enable the pulse superimposition) When the rising edge of the terminal is detected, add the value set in P21.26 to the set pulse value, and compensate to the pulse reference channel based on the pulse superposition speed set in P21.27. 2. Input terminal function 67 (pulse increase) When the terminal is valid, superpose the pulse value to the pulse reference channel based on the pulse superposition speed set in P21.27. Note: Terminal filter P05.09 may affect the actual superposed value. For example: P21.27=1.0/ms; P05.05=67 When the S5 terminal input signal is 0.5s, the actual superposed pulses = 500 pulses. 3. Input terminal function 69 (pulse decrease) The time sequence of this function is same as the above. The difference is that this terminal is the pulse number that is superposed in descending mode. Note: The pulses mentioned above are superposed to A2 and B2 of pulse reference channel. Functions such as filtering and electronic gear are still valid for superposed pulses.	5.0s	0

Function code	Name	Description	Default	Modify
		4. Output terminal function 28 (during pulse superposition) During the pulse superposition, the output terminal is valid. After the pulse superposition is completed, the output terminal is invalid.		
P21.29	Speed feedforward filtering time constant (pulse string-based speed mode)	Filter time constant detected by the pulse string when the speed reference source is set to the pulse train (P00.06=12 or P00.07=12). Setting range: 0–3200.0ms	10.0ms	0
P21.30	Numerator of the 2nd command ratio	1–65535	1000	0
P21.31	Speed measuring method of pulse reference	0-2 0: By main control board 1: By PG card 2: Hybrid method	0	0
P21.32	Pulse reference feedforward source	0x0–0x1 0: Al1 or HDIA 1: Encoder F-channel pulses	0x0	0
P21.33	Setting of encoder count value clearing	0–65535	0	0
P21.34	Dual PG card selection	0x0000–0x3111 Ones place–Hundreds place: Second PG card position selection Ones place: Selection of PG card at card slot 1 (near the terminal) Tens place: Selection of PG card at card slot 2 Hundreds place: Selection of PG card at card slot 3 (near the terminal) 0: Speed closed-loop PG card, corresponding to group P20 1: Position closed-loop PG card, corresponding to group P24 Hundreds place: Speed closed-loop selection 0: Disable 1: Position closed-loop PG card, as the speed closed-loop for switching to motor 2	0x0000	©

Function code	Name	Description	Default	Modify
		2: Position closed-loop SSI PG card, using incremental signal as the speed closed-loop selection 3: SSI absolute position as the speed closed-loop (at this time, you need to set corresponding installation card slots for the bits from ones place to hundreds place)		
P21.35	SSI positioning control polarity selection	0x00–0x11 Ones place: Feedforward control polarity selection 0: Positive 1: Negative Tens place: Absolute position polarity selection 0: Positive 1: Negative	0x00	0
P21.36	Reserved	0–65535	0	•
P21.37	Positioning ACC segment S curve time	0.00-300.00s Note: The value 0 indicates automatic adaptation.	0.00s	0
P21.38	Positioning DEC segment S curve time	0.00-300.00s Note: The value 0 indicates automatic adaptation.	0.00s	0
P21.39	Positioning pre-exciting time	0.000–10.000s	0.100s	0
P21.40	Speed-to-position switchover delay	0.000-8.000s	0.500s	0
P21.41	Communication positioning and SSI feedback position control selection	0x0000–0xF121 Ones place: PN or EC communication positioning 0: PN communication 1: EC communication Tens place: SSI feedback position control filter 0: Invalid 1: Filter during positioning 2: Filter at the initial position and during positioning Hundreds place: Feedback position display filter 0: Do not filter	0x1000	0

Function code	Name	Description	Default	Modify
		1: Filter Thousands place: SSI sensor sampling cycle 0–F: 1–15ms		
P21.42	SSI incremental filter width	0–60000 (SSI pulses) When the feedforward frequency is greater than 0.8Hz, filter out the pulse fluctuations greater than P20.30. When P20.30 < 1000, the filter value at each frequency is the setting of P20.30. When P20.30 > 1000, the filter value at each frequency is 1000 plus the relative maximum frequency linearization processing value.	0	0
P21.43	SSI max. linear speed	6.0–6000.0m/min	300.0 m/min	0
P21.44	SSI static filter width	0.0–6000.0mm	5.0mm	0
P21.45	SSI dynamic filter width	0.0–6000.0mm	2000.0 mm	0
P21.46	Position deviation timeout time	0.00-50.00s	0.20s	0
P21.47	Brake release current in position control	0.0–200.0%	0.0%	0
P21.48	Short distance adaptive positioning ACC/DEC	0–60000 (SSI pulses) When the positioning distance is less than P21.48, the present positioning ACC/DEC increases by two times.	10000	0

Group P23--Vector control of motor 2

o. oup . 20	100101 00111101 01	******		
Function code	Name	Description	Default	Modify
P23.00	Speed-loop proportional gain 1	The parameters P23.00–P23.05 are applicable only to vector control mode. Below the	20.0	0
P23.01	Speed-loop integral time 1	switching frequency 1 (P23.00), the speed-loop PI parameters are: P23.00 and P23.01. Above	0.200s	0
P23.02	Low-point frequency for switching	the switching frequency 2 (P23.05), the speed-loop PI parameters are: P23.03 and P23.04. PI parameters are obtained according	5.00Hz	0
P23.03	Speed-loop	to the linear change of two groups of	20.0	0

Function code	Name	Description	Default	Modify
	proportional gain 2	parameters. See the following figure:		
P23.04	Speed-loop integral time 2	PI parameters (P23.00,P23.01)	0.200s	0
P23.05	High-point frequency for switching	The speed loop dynamic response characteristics of vector control can be adjusted by setting the proportional coefficient and integral time of speed regulator. Increasing proportional gain or reducing integral time can accelerate dynamic response of speed loop; however, if the proportional gain is too large or integral time is too small, system oscillation and overshoot may occur; if proportional gain is too small, stable oscillation or speed offset may occur. PI parameters have a close relationship with the inertia of the system. Adjust PI parameters depending on different loads to meet various demands. Setting range of P23.00: 0.0–200.0 Setting range of P23.01: 0.000–10.000s Setting range of P23.02: 0.00Hz–P23.05 Setting range of P23.03: 0.0–200.0 Setting range of P23.04: 0.000–10.000s Setting range of P23.05: P23.02–P00.03 (Max. output frequency)	10.00Hz	0
P23.06	Speed-loop output filter	0–8 (corresponding to 0–2 ⁸ /10ms)	0	0
P23.07	Electromotive slip compensation coefficient of vector control	Slip compensation coefficient is used to adjust the slip frequency of the vector control and improve the speed control accuracy of the	100%	0
P23.08	slip compensation	system. Adjusting the parameter properly can control the speed steady-state error. Setting range: 50–200%	100%	0

Function code	Name	Description	Default	Modify
P23.09	Current loop proportional coefficient P	Note: The two function codes impact the dynamic response speed and control accuracy of	1000	0
P23.10	Current-loop integral coefficient I	the system. Generally, you do not need to modify the two function codes. • Applicable to SVC mode 0 (P00.00=0), SVC mode 1 (P00.00=1), and closed-loop vector control mode (P00.00=3). Setting range: 0–65535	1000	0
P23.11	Speed-loop differential gain	0–10.00s	0.00s	0
P23.12	High-frequency current-loop proportional coefficient	In the closed-loop vector control mode (P00.00=3), when the frequency is lower than the current-loop high-frequency switching threshold (P23.14), the current-loop PI	1000	0
P23.13	Integral coefficient of high-frequency current loop	parameters are P23.09 and P23.10; and when the frequency is higher than the current-loop high-frequency switching threshold, the	1000	0
P23.14	Current-loop high-frequency switching threshold	current-loop PI parameters are P23.12 and P23.13. Setting range of P23.12: 0–65535 Setting range of P23.13: 0–65535 Setting range of P23.14: 0.0–100.0% (of the max. frequency)	100.0%	0
P23.15	Enabling PI parameter switchover for start/stop in vector mode	 0-1 0: Disable 1: Enable If the function is enabled: PI parameters in group P03 are used for running; PI parameters in group P23 are used for stop. 	0	0

Group P24—Encoder of motor 2

Function code	Name	Description	Default	Modify
P24.00	Encoder type display	0: Incremental encoder 1: Resolver-type encoder 2: Sin/Cos encoder 3: Endat/SSI absolute encoder	0	•
P24.01	Encoder pulse	Number of pulses generated when the encoder	1024	0

Function	Nama	Description.	Defects	NA 116
code	Name	Description	Default	Modify
	number	revolves for one turn.		
		Setting range: 0–16000		
		Ones place: AB direction		
		0: Forward		
		1: Reverse		
		Tens place: Z pulse direction (reserved)		
P24.02	Encoder direction	0: Forward	0x000	0
		1: Reverse		
		Hundreds: CD/UVW pole signal direction		
		0: Forward		
		1: Reverse		
	Encoder	Specifies the encoder disconnection fault		
P24.03	disconnection fault	detection time.	2.0s	0
	detection time	Setting range: 0.0–10.0s		
		Specifies the detection time of encoder reversal		
P24.04	Encoder reversal	fault.	0.8s	0
	fault detection time	Setting range: 0.0–100.0s		
		Setting range: 0x00–0x99		
	Filter times of encoder detection	Ones place: Low-speed filter time,		
P24.05		corresponding to 2^(0-9)×125µs	0x33	0
		Tens place: High-speed filter times,		
		corresponding to 2^(0-9)×125µs		
	Speed ratio	You need to set the function parameter when		
Do 4 00	between encoder	the encoder is not installed on the motor shaft		
P24.06	mounting shaft and	and the drive ratio is not 1.	1.000	0
	motor	Setting range: 0.001–65.535		
		Bit 0: Enable Z-pulse calibration		
		Bit 1: Enable encoder angle calibration		
		Bit 2: Enable SVC speed measurement		
		bit3: Reserved		
		bit4: Reserved		
P24.07	Control parameters	bit5: Reserved	0x0007	
P24.07	of SM	Bit 6: Enable the CD signal calibration	UXUUU7	0
		Bit7: Reserved		
		Bit 8: Do not detect encoder faults during		
		autotuning		
		Bit 9: Enable pulse detection optimization		
		Bit 10: Enable the initial Z pulse calibration		

Function code	Name	Description	Default	Modify
		optimization Bit 12: Clear the Z pulse arrival signal after stop bit14: Detect Z pulse after one rotation		
P24.08	Enable Z pulse offline detection	0x00–0x11 Ones place: Z pulse detection 0: No detection 1: Enable Tens place: UVW pulse detection (for SM) 0: No detection 1: Enable	0x10	0
P24.09	Initial angle of Z pulse	Relative electric angle between the encoder Z pulse and the motor pole position. Setting range: 0.00–359.99	0.00	0
P24.10	Pole initial angle	Relative electric angle between the encoder position and the motor pole position. Setting range: 0.00–359.99	0.00	0
P24.11	Initial pole angle autotuning	0–3 1: Rotary autotuning 1 (DC braking) 2: Static autotuning 2 (suitable for resolver-type encoder, sin/cos with CD signal feedback) 3: Rotary autotuning (initial angle identification) The pole initial angle obtained through rotary autotuning 1 is accurate. Rotary autotuning 1 is recommended in most cases, in which the motor needs to be decoupled from the load or the motor load is light.	0	0
P24.12	Speed measurement optimization selection	0: No optimization 1: Optimization mode 1 2: Optimization mode 2	1	0
P24.13	CD signal zero offset gain	0–65535	0	0
P24.14	Encoder type selection	Ones place: Incremental encoder 0: Without UVW 1: With UVW Tens place: Sin/Cos encoder 0: without CD signal 1: with CD signal	0x00	0

Function code	Name	Description	Default	Modify
P24.15	Speed measurement mode	O: By PG card 1: Locally measured through HDIA and HDIB. Only the 24V incremental encoders are supported. Note: HDI height measuring is implemented through the HDIA and HDIB and supports only incremental 24V encoders.	0	0
P24.16	Frequency division coefficient	0–255 When the function parameter is set to 0 or 1, frequency division of 1:1 is implemented.	0	0
P24.17	selection	0x0000–0xFFFF Bit 0: Enable encoder input filter 0: Do not filter 1: Filter Bit 1: Encoder signal filter mode 0: Self-adaptive filter 1: Use P24.18 as the filter parameter Bit2: Enable/disable encoder frequency-division output filter 0: Do not filter 1: Filter Bit3: Enable/disable pulse reference frequency-division output filter 0: Do not filter 1: Filter Bit4: Enable/disable pulse reference filter 0: Do not filter 1: Filter Bit5: Pulse reference filter mode 0: Self-adaptive filter 1: Use P24.19 as the filter parameter Bit 6: Frequency-divided output source selection (valid only for incremental encoders) 0: Encoder signals 1: Pulse reference signals Bit 7-Bit 15: Reserved	0x0033	0
P24.18	Encoder pulse filter width	0–63 The filter time is P24.18×0.25µs. The value 0	2	0

Function code	Name	Description	Default	Modify
		or 1 indicates 0.25µs.		
P24.19	Pulse reference filter width	$0-63$ The filter time is P24.19×0.25 μ s. The value 0 or 1 indicates 0.25 μ s.	2	0
P24.20	F-channel pulse reference PPR	0–16000	1024	0
P24.21	Enabling SM angle compensation	0–1	0	0
P24.22	Frequency point of speed measurement mode switchover	0–630.00Hz	1.00Hz	0
P24.23	Angle compensation coefficient	-200.0–200.0%	100.0%	0
P24.24	Motor pole pairs in initial pole angle autotuning	0–128	2	0
P24.25	SSI encoder 2 resolution low bit	0–20	16	0
P24.26	SSI encoder 2 resolution high bit	0–20	8	0

Group P25--I/O card input functions

Function code	Name	Description	Default	Modify
P25.00	HDI3 input type	0–1 0: HDI3 is high-speed pulse input 1: HDI3 is digital input	0	0
P25.01	Function of S5		0	0
P25.02	Function of S6		0	0
P25.03	Function of S7		0	0
P25.04	Function of S8	Same as the description for DOE	0	0
P25.05	Function of S9	Same as the description for P05	0	0
P25.06	Function of S10		0	0
P25.07	Function of S11		0	0
P25.08	Function of S12		0	0

Function code	Name		Descri	iptior	n		Default	Modify
P25.09	Function of HDI3						0	0
P25.10	Expansion card input terminal polarity	0x000-0x1FF BIT7 S12 BIT3 S8	BIT6 S11 BIT2 S7	S	IT5 310 IT1 S6	BIT8 HDI3 BIT4 S9 BIT0 S5	0x000	0
P25.11	Expansion card virtual terminal setting	0x000-0x1FF Bit0: S5 virtua Bit1: S6 virtua Bit2: S7 virtua Bit3: S8 virtua Bit4: S9 virtua Bit5: S10 virtu Bit6: S11 virtu Bit7: S12 virtu Bit8: HDI3 vir	al terminal al terminal al terminal al terminal al terminal ual terminal ual terminal ual terminal ual terminal	1 1	Enable		0x000	©
P25.12	HDI3 switch-on delay						0.000s	0
P25.13	HDI3 switch-off delay						0.000s	0
P25.14	S5 switch-on delay						0.000s	0
P25.15	S5 switch-off delay	The function	codes s	pecify	y the	delay time	0.000s	0
P25.16	S6 switch-on delay	corresponding	•			•	0.000s	0
P25.17	S6 switch-off delay	when the pro	•	e inpu	ut termi	nals switch	0.000s	0
P25.18	S7 switch-on delay	on or switch o	off.				0.000s	0
P25.19	S7 switch-off delay	Si electrical	level				0.000s	0
P25.20	S8 switch-on delay	Si valid in	valid	∑ valid	<i>\$[[]</i>	invalid	0.000s	0
P25.21	S8 switch-off delay	 -	Switch-on delay		Switch		0.000s	0
P25.22	S9 switch-on delay		uelay		delay	′	0.000s	0
P25.23	S9 switch-off delay	Setting range	: 0.000–50	.000s	6		0.000s	0
P25.24	S10 switch-on delay						0.000s	0
P25.25	S10 switch-off delay						0.000s	0
P25.26	S11 switch-on						0.000s	0

Function code	Name	Description	Default	Modify
	delay			
P25.27	S11 switch-off		0.000s	0
F25.21	delay		0.0008	U
P25.28	S12 switch-on delay		0.000s	0
P25.29	S12 switch-off delay		0.000s	0
P25.30	Al3 lower limit	Used to define the relationship between the analog input voltage and its corresponding	0.00V	0
P25.31	Corresponding setting of Al3 lower limit	setting. When the analog input voltage exceeds the range from the upper limit to the lower limit, the upper limit or lower limit is used. When the analog input is current input,	0.0%	0
P25.32	AI3 upper limit	0mA-20mA current corresponds to 0V-10V voltage.	10.00V	0
P25.33	Corresponding setting of AI3 upper limit	In different applications, 100.0% of the analog setting corresponds to different nominal values. See the descriptions of each application section for details.	100.0%	0
P25.34	Al3 input filter time	The following figure illustrates the cases of several settings:	0.030s	0
P25.35	AI4 lower limit	100%	0.00V	0
P25.36	Corresponding setting of Al4 lower limit	0 AI 10V 20mA AI3/AI4 -100%	0.0%	0
P25.37	Al4 upper limit	Input filter time: to adjust the sensitivity of	10.00V	0
P25.38	Corresponding setting of Al4 upper limit	analog input. Increasing the value properly can enhance analog input anti-interference but may reduce the sensitivity of analog input. Note: Al3 can support 0-10V/0-20mA input.	100.0%	0
P25.39	Al4 input filter time	When Al3 selects 0-20mA input, the corresponding voltage of 20mA is 10V. P25.30/P25.35 setting range: 0.00V-P25.32/P25.37 P25.31/P25.36 setting range: -300.0%-300.0%	0.030s	0

_				
Function code	Name	Description	Default	Modify
		P25.32/P25.37 setting range: P25.30/P25.35–10.00V P25.33/P25.38 setting range: -300.0%–300.0% P25.34/P25.39 setting range: 0.000s–10.000s		
P25.40	3 1	0–1 0: Input set through frequency 1: Counting	0	0
P25.41	HDI3 lower limit frequency	0.000kHz–P25.43	0.000kHz	0
P25.42	Corresponding setting of HDI3 lower limit frequency	-300.0–300.0%	0.0%	0
P25.43	HDI3 upper limit frequency	P25.41–50.000kHz	50.000 kHz	0
P25.44	Corresponding setting of HDI3 upper limit frequency	-300.0–300.0%	100.0%	0
P25.45	HDI3 frequency input filter time	0.000–10.000s	0.030s	0
P25.46	Al3 input signal type	0–1 0: Voltage 1: Current	0	0
P25.48	S terminal power signal selection (I/O card 2)		0	0

Group P26-I/O card output functions

Function code	Name	Description	Default	Modify
P26.00	HDO2 output type	O: Open collector high-speed pulse output Open collector output	0	0
P26.01	HDO2 output selection	Same as the description for P06.01	0	0
P26.02	Y2 output selection		0	0

Function	Name	Description	Default	Modify
code) (a) (b) (b)	·		
P26.03	Y3 output selection		0	0
P26.04	RO3 output		0	0
	selection			
P26.05	RO4 output		0	0
	selection			
P26.06	RO5 output		0	0
	selection			
P26.07	RO6 output		0	0
	selection			
P26.08	RO7 output		0	0
	selection			
P26.09	RO8 output		0	0
-	selection			
P26.10	RO9 output selection		0	0
	RO10 output			
P26.11	selection		0	0
	Expansion card	0x0000-0x1FFF		
P26.12	output terminal	RO12, RO10RO3, HDO2, Y3, Y2 in	0x0000	0
	polarity	sequence.		
P26.13	HDO2 switch-on	0.000-50.000s	0.000s	
P20.13	delay	0.000-50.0008	0.0008	
P26.14	HDO2 switch-off	0.000-50.000s	0.000s	
F20.14	delay	0.000-30.0008	0.0008	
P26.15	Y2 switch-on delay		0.000s	0
P26.16	Y2 switch-off delay		0.000s	0
P26.17	Y3 switch-on delay	The function codes specify the delay time	0.000s	
P26.18	Y3 switch-off delay	corresponding to the electrical level changes	0.000s	
P26.19	RO3 switch-on	when the programmable output terminals	0.000s	0
- 20110	delay	switch on or switch off.	0.000	
P26.20	RO3 switch-off	Y electric level	0.000s	0
	delay	inyalid Y valid Invalid ///, Valid////////		
P26.21	RO4 switch-on delay	i Switch on → Switch off delay delay H Switch off delay	0.000s	0
	RO4 switch-off	Setting range: 0.000–50.000s		
P26.22	delay	Setting range: 0.000–30.0008	0.000s	0
P26.23	RO5 switch-on		0.000s	0
FZU.Z3	delay		0.0008	

Function code	Name	Description	Default	Modify
P26.24	RO5 switch-off delay		0.000s	0
P26.25	RO6 switch-on delay		0.000s	0
P26.26	RO6 switch-off delay		0.000s	0
P26.27	RO7 switch-on delay		0.000s	0
P26.28	RO7 switch-off delay		0.000s	0
P26.29	RO8 switch-on delay		0.000s	0
P26.30	RO8 switch-off delay		0.000s	0
P26.31	RO9 switch-on delay		0.000s	0
P26.32	RO9 switch-off delay		0.000s	0
P26.33	RO10 switch-on delay		0.000s	0
P26.34	RO10 switch-off delay		0.000s	0
P26.35	AO2 output selection	Same as the description for P06.14	0	0
P26.36	AO3 output selection		0	0
P26.38	AO2 output lower		0.0%	0
P26.39	AO2 output corresponding to lower limit	The function codes define the relationship between the output value and analog output.	0.00V	0
P26.40	AO2 output upper limit	When the output value exceeds the allowed range, the output uses the lower limit or upper	100.0%	0
P26.41	AO2 output corresponding to upper limit	limit. When the analog output is current output, 1mA equals 0.5V.	10.00V	0
P26.42	AO2 output filter time	In different cases, the corresponding analog output of 100% of the output value is different.	0.000s	0
P26.43	AO3 output lower limit		0.0%	0

Function code	Name	Description	Default	Modify
	AO3 output	AO 10V (20mA)		
P26.44	corresponding to		0.00V	0
	lower limit			
P26.45	AO3 output upper limit		100.0%	0
	AO3 output	0.0% 100.0%		
P26.46	corresponding to	Setting range of P26.38: -300.0%–P26.40	10.00V	0
	upper limit	Setting range of P26.39: 0.00V–10.00V		
P26.47	AO3 output filter	P26.40 setting range: P26.38-300.0%	0.000s	0
	time	Setting range of P26.41: 0.00V-10.00V		
		Setting range of P26.42: 0.000s-10.000s		
		Setting range of P26.43: -300.0%—P26.45		
		Setting range of P26.44: 0.00V-10.00V		
		P26.45 setting range: P26.43-300.0%		
		Setting range of P26.46: 0.00V-10.00V		
		Setting range of P26.47: 0.000s-10.000s		

Group P27—Programmable expansion card functions

Function code	Name	Description	Default	Modify
P27.00	Enabling programmable card functions	0: Disable 1: Enable	0	©
P27.01	C_WrP1	0-65535 Note: Used to write a value to WrP1 of the programmable card.	0	0
P27.02	C_WrP2	0-65535 Note: Used to write a value to WrP2 of the programmable card.	0	0
P27.03	C_WrP3	0-65535 Note: Used to write a value to WrP3 of the programmable card.	0	0
P27.04	C_WrP4	0-65535 Note: Used to write a value to WrP4 of the programmable card.	0	0
P27.05	C_WrP5	0-65535 Note: Used to write a value to WrP5 of the programmable card.	0	0
P27.06	C_WrP6	0–65535	0	0

Function code	Name	Description	Default	Modify
		Note: Used to write a value to WrP6 of the		
		programmable card.		
		0–65535		
P27.07	C_WrP7	Note: Used to write a value to WrP7 of the	0	0
		programmable card.		
		0–65535		
P27.08	C_WrP8	Note: Used to write a value to WrP8 of the	0	0
		programmable card.		
		0–65535		
P27.09	C WrP9	Note: Used to write a value to WrP9 of the	0	0
	_	programmable card.		
		0–65535		
P27.10	C WrP10	Note: Used to write a value to WrP10 of the	0	0
	_	programmable card.		
	Programmable	0: Stop		
P27.11	card status	1: Run	0	•
		0–65535		
P27.12	C_MoP1	Note: Used to monitor/view the MoP1 value	0	•
		of the programmable card.		
		0–65535		
P27.13	C MoP2	Note: Used to monitor/view the MoP2 value	0	•
		of the programmable card.		_
		0–65535		
P27.14	C MoP3	Note: Used to monitor/view the MoP3 value	0	•
	0	of the programmable card.	Ü	
		0–65535		
P27.15	C MoP4	Note: Used to monitor/view the MoP4 value	0	•
	_	of the programmable card.		
		0–65535		
P27.16	C_MoP5	Note: Used to monitor/view the MoP5 value	0	•
	_	of the programmable card.		
		0–65535		
P27.17	C_MoP6	Note: Used to monitor/view the MoP6 value	0	•
		of the programmable card.		
		0–65535		
P27.18	C_MoP7	Note: Used to monitor/view the MoP7 value	0	•
		of the programmable card.		
P27.19	C_MoP8	0–65535	0	•

Function code	Name	Description	Default	Modify
		Note: Used to monitor/view the MoP8 value		
		of the programmable card.		
		-9999–32767		
P27.20	C_MoP9	Note: Used to monitor/view the MoP9 value	0	•
		of the programmable card.		
		-9999–32767		
P27.21	C_MoP10	Note: Used to monitor/view the MoP10 value	0	•
		of the programmable card.		
		0x00-0x3F		
		bit0: PS1		
	Digital input	bit1: PS2		
P27.22	terminal status of	bit2: PS3	0x00	•
	programmable card	bit3: PS4		
		bit4: PS5		
		bit5: PS6		
	Digital output	0x00-0x03		
P27.23	terminal status of	bit0: PRO1	0x00	•
	programmable card	bit1: PRO2		
		0–65535		
D07.04	Al1 of the	Relative to 0-10.00V/0.00-20.00mA	•	_
P27.24	programmable card	Note: It is the input Al1 value of the	0	•
		programmable card.		
		0–65535		
D07.05	AO1 of the	Relative to 0-10.00V/0.00-20.00mA	•	_
P27.25	programmable card	Note: The function code is used to display	0	•
		the AO1 value from the programmable card.		
		0x00-0x28		
		Ones place: Quantity of data sent from the		
		programmable card and VFD (that is, quantity		
		of data sent from the programmable card + from		
	Length of data sent	VFD sending table 1 + from VFD sending table		
		2)		
P27.26	card and PZD	0: 0+24+60	0x03	0
	communication	1: 12+24+60		
	object	2: 24+24+60		
	-	3: 36+24+60		
		4: 48+24+60		
		5: 60+48+60		
		6: 72+24+36		

Function code	Name	Description	Default	Modify
		7: 84+24+36		
		8: 96+96+96		
		Tens place: Card that communicates with the		
		programmable card through PZD (valid only		
		when the ones place of P27.26 is 5)		
		0: DP card		
		1: CANopen card		
		2: PN card		
		Note: After this parameter is changed,		
		restart the VFD to take effect.		
	Programmable	0–1		
P27.27	card save function	0: Disable	1	0
	at power off	1: Enable		

Group P28--Master/slave control

Function	Name	Description	Default	Modify
P28.00	Master/slave mode	0–2 0: Master/slave control is invalid. 1: The local device is the master. 2: The local device is the slave.	0	0
P28.01	Master/slave communication data selection	0-1 0: CAN 1: Reserved	0	0
P28.02	Master/slave control mode	Ones place: Master/slave running mode selection 0: Master/slave mode 0. (Both the master and slave use speed control, and power balancing is performed by droop control.) 1: Master/slave mode 1. (The master and slave must be in the same type of vector control. When the master is in speed control, the slave is forced into torque control.) 2: Combined mode (Master/slave mode 2). The slave switches from speed mode (master/slave mode 0) to torque mode (master/slave mode 1) at a frequency point. 3: Master/slave mode 3 (Reserved)(Both the	0x001	0

Function code	Name	Description	Default	Modify
		master and slave adopt speed control, and the slave performs power balance depending on the speed loop integral result of the master.) 4: Closed-loop master/slave mode 4 (Both the master and slave adopt closed-loop speed control, and the slave performs power balance depending on the speed loop output of the master.) Tens place: Slave start command source 0: Master 1: Determined by P00.01 Hundreds place: Whether to enable master/slave to send/receive data 0: Enable 1: Disable		
P28.03	Slave speed gain	It is a percentage of the master ramp frequency. When the master and slave are different in the DEC ratio: 0.0–500.0% When the master and slave are the same in the DEC ratio: 100.0%	100.0%	0
P28.04	Slave torque gain	It is a percentage of the set frequency of the master. When the master and slave are different in the motor power: 0.0–500.0% When the master and slave are the same in the motor power: 100.0%	100.0%	0
P28.05	Frequency point for switching between speed mode and torque mode in master/slave mode 2	0.00–10.00Hz	5.00Hz	0
P28.06	Slave count	0–15	1	0
P28.07	Enabling the slave speed deviation window	0-1 0: Disable 1: Enable When the slave adopts the torque control mode, the speed deviation monitoring function	0	0

Function code	Name	Description	Default	Modify
		can be enabled.		
P28.08	Slave positive speed deviation window upper limit	0.00–50.00Hz When the actual speed is higher than the reference speed, if the actual speed is higher than (Reference speed + P28.08) and exceeds this upper limit, the speed has to be adjusted.	5.00Hz	0
P28.09	Slave negative speed deviation window lower limit	0.00–50.00Hz When the actual speed is lower than the reference speed, if the actual speed is lower than (Reference speed - P28.09) and the window lower limit, the speed has to be adjusted.	5.00Hz	0
P28.10	Slave rotation speed regulation coefficient Kb	0–50000 Applicable only in master/slave mode 4, for slave rotation speed regulation	100	0
P28.13	CAN slave torque offset	-100.0–100.0%	0.0%	0
P28.14	Master/slave holding brake synchronization control	0x00–0x11 Ones place: Brake release synchronization 0: Invalid 1: Valid Tens place: Brake closing synchronization 0: Invalid 1: Valid Note: In a master/slave mode, when the function specified by P28.14 is enabled, the master and slave must be the same in brake release frequency and brake closing frequency.	0x11	0
P28.15	Master/slave brake release synchronization timeout time	0.00-30.00s	1.00s	0
P28.16	Master/slave brake closing synchronization timeout time	0.00-30.00s	2.00s	0
P28.18	Slave torque	0–1	0	0

Function code	Name	Description	Default	Modify
	direction in torque	0: Common mode		
	mode	1: Forced to follow the master torque direction		

Group P85--Anti-sway control

Function code	Name	Description	Default	Modify
P85.00	Enabling anti-sway	0-1 0: Invalid 1: Enable Note: The anti-sway mode can be enabled by setting P85.00=1 or through terminal function selection.	0	0
P85.01	Anti-sway mode selection	0–2 0: Common anti-sway 1: Anti-sway without rope length 2: S curve anti-sway	0	0
P85.02	Rope length obtaining source	0-6 0: Keypad 1: Al1 2: Al2 3: HDIA 4: HDIB 5: Max(Al1, HDIA) 6: Max(Al2, HDIB)	0	0
P85.03	Keypad set rope length	0.00–100.00m	0.00m	0
P85.04	Max. rope length	5.00–150.00m	40.00m	0
P85.05	Rope length compensation value	0.00–150.00m	0.00m	0
P85.06	Anti-sway switching frequency threshold	0.00–50.00Hz Anti-sway is not started when the difference between the set frequency and present frequency is less than P85.06.	10.00Hz	0
P85.07	Damping factor	0.000–1.000	0.400	0
P85.08	Gear switchover filtering delay	0.000-10.000s Applicable to P85.01=0 or 1.	0.100s	0
P85.09	Anti-sway percentage	0–100 Applicable to P85.01=0 or 1.	30	0

Function code	Name	Description	Default	Modify
P85.10	Residual sway percentage	0–100 Applicable to P85.01=1 Anti-sway without rope length.	11	0
P85.11	Anti-sway ACC/DEC time	0.00–10.00s Applicable to P85.01=1 Anti-sway without rope length.	6.00s	0
P85.12- P85.14	Reserved	/	/	/
P85.15	S curve gain coefficient	0.0–1.0 Applicable to P85.01=2 S curve anti-sway.	0.6	0
P85.16	Anti-sway jogging time	0.000–5.000s Applicable to P85.01=2 S curve anti-sway.	0.000s	0
P85.17- P85.18	Reserved	/	/	/

Group P86—Slewing control

Function code	Name	Description	Default	Modify
P86.00	Curve entrance frequency	1.00–25.00Hz	8.00Hz	0
P86.01	Curve coefficient	10–100	70	0
P86.02	Stop torque hold time 1	1.0–50.0s	16.0s	0
P86.03	Stop torque hold time 2	1.0–50.0s	6.0s	0
P86.04	Stop comparison frequency	0.00–50.00Hz The value 0.00Hz indicates no use. During stop, if the frequency is lower than P86.04, the low speed is valid.	0.00Hz	0
P86.05	Low-speed segment curve selection	0–1 0: The low-speed segment curve uses the time specified by P86.03. 1: The low-speed segment does not use the curve manner but uses the straight line manner. Used when the curve mode P01.05=2 is used. When the stop frequency is lower than P86.04 (low-speed function is valid).	0	0
P86.06	Enabling discontinuous	0–1 0: Continuous	1	0

Function code	Name	Description	Default	Modify
	curves	1: Discontinuous		
P86.07	Low-speed segment curve coefficient	0–100	70	0
P86.08	Gear switchover ACC curve time	0.0–30.0s	10.0s	0
P86.09	ACC curve entrance frequency ratio of gear switchover	0–100.0% (of the set frequency)	90%	0
P86.10	Gear switchover DEC curve time	0.0–30.0s The value 0 indicates no use of gear switchover curves.	10.0s	0
P86.11	DEC curve entrance frequency ratio of gear switchover	0.0–50.0% (of the set frequency)	20.0%	0
P86.12	Direction change switchover mode selection	0: Normal 1: Quick switchover mode 1 (single tap-braking)	0	0
P86.13	Direction change switchover basis DEC time	0.0–50.0s	8.0s	0
P86.14	Lagging value of direction change switchover basis time	100%–500% (Used together with multi-step speed running)	100%	0
P86.15	Direction change switchover retaining frequency	0.00–15.00Hz	3.50Hz	©
P86.16	Hold time 1 of direction change switchover frequency	0.000–50.000s	4.000s	0
P86.17	Hold time 2 of direction change switchover frequency	0.000–50.000s	3.000s	0
P86.18	Direction change	0.00-50.00Hz	0.00Hz	0

Function code	Name	Description	Default	Modify
	switchover comparison frequency	If the running frequency just after entering the direction change switchover is lower than P86.18, P86.17 is used.		
P86.19	Enable 5-gear quick start	0–1 0: Disable 1: Enable	0	0
P86.21	Enabling reverse-rotation braking	 0-2 (If this function is enabled, the reverse-gear stop DEC time is used during reverse-gear stop.) 0: Disable 1: Enable. Reverse-rotation braking is used as usual. 2: Enable. The retaining frequency is added during reverse-rotation braking. That is, if the frequency is higher than P86.23 when reverse braking is valid, P86.25 is kept for P86.24. 	0	0
P86.22	Reverse-rotation braking duration	0–50.0s	8.0s	0
P86.23	Reverse-rotation braking comparison frequency	0.00–50.00Hz	15.00Hz	0
P86.24	Reverse-rotation braking retaining frequency hold time	0.000–50.000s	1.500s	0
P86.25	Reverse-rotation braking retaining frequency	0.00–50.00Hz	15.00Hz	0
P86.28 Enabling wind resistance		0x000–0x111 Ones place: Wind resistance enabling selection 0: Disable 1: Enable Tens place: ACC phase mode 0: Clearing the droop value through auto adaptation 1: Setting the droop value change rate manually Hundreds place: DEC phase mode 0: Quick compensating for the droop value 1: Setting the droop value change rate manually	0x000	0

Function parameters

Function	Name	Description	Default	Modify
code	Name	Description	Delault	Wiodily
	Droop value			
P86.29	change rate at ACC	0.00–20.00Hz/s	1.00 Hz/s	0
	phase			
	Droop value			
P86.30	change rate at DEC	0.00-20.00Hz/s	1.00 Hz/s	0
	phase			
	Slewing jog stop	0–1		
P86.31	mode	0: Curve	1	0
		1: Straight line		
P86.32	Slewing jog speed	0.0–200.0	10.0	0
	loop KP			
P86.33	Slewing jog speed	0.000–10.000s	0.200s	0
	loop Ti			
P86.34	Jog action time	0.000-5.000s	2.000s	0
	judgment			
P86.35	Jog frequency	y 0.00–20.00Hz		0
	judgment			
P86.36	Jog ACC time	0.0–60.0s	5.0s	0
P86.37	Jog DEC time	0.0–60.0s	5.0s	0
	Enabling tower	0–1		
P86.39	crane deformation	0: Disable	0	0
	compensation	1: Enable		
	Deformation			
P86.40	compensation	0.0–22.0	15.0	0
	coefficient 1			
	Deformation			
P86.41	compensation	0.0–10.0	0.0	0
	coefficient 2			
	Deformation			
P86.42	compensation filter	0–30	17	0
	times			
	Low frequency			
P86.43	compensation	0.00-100.00Hz	3.00Hz	0
	reference			
	frequency			
P86.44	Low frequency	0–30	23	0
. 00.14	deformation			Ú

Function code	Name	Description	Default	Modify
	compensation filter			
	times			

Group P89—Parameters of motor 3

Function code	Name	Description	Default	Modify
P89.00	Type of motor 3	0: Asynchronous motor (AM) 1: Synchronous motor (SM)	0	0
P89.01	Rated power of AM 3	0.1–3000.0kW	Model depended	0
P89.02	Rated frequency of AM 3	0.01Hz-P00.03 (Max. output frequency)	50.00Hz	0
P89.03	Rated speed of AM 3	1–60000RPM	Model depended	0
P89.04	Rated voltage of AM 3	0–1200V	Model depended	0
P89.05	Rated current of AM 3	0.8–6000.0A	Model depended	0
P89.06	Stator resistance of AM 3	0.001–65.535Ω	Model depended	0
P89.07	Rotor resistance of AM 3	0.001–65.535Ω	Model depended	0
P89.08	Leakage inductance of AM 3	0.1–6553.5mH	Model depended	0
P89.09	Mutual inductance of AM 3	0.1–6553.5mH	Model depended	0
P89.10	No-load current of AM 3	0.1–6553.5A	Model depended	0
P89.11	Magnetic saturation coefficient 1 of iron core of AM 3	0.0–100.0%	80.0%	0
P89.12	Magnetic saturation coefficient 2 of iron core of AM 3	0.0–100.0%	68.0%	0
P89.13	Magnetic saturation coefficient 3 of iron core of AM 3		57.0%	0
P89.14	Magnetic saturation	0.0–100.0%	40.0%	0

Function code	Name	Description	Default	Modify
	coefficient 4 of iron core of AM 3			
P89.15	Rated power of SM 3	0.1–3000.0kW	Model depended	0
P89.16	Rated frequency of SM 3	0.01Hz-P00.03 (Max. output frequency)	50.00Hz	0
P89.17	Number of pole pairs of SM 3	1–128	2	0
P89.18	Rated voltage of SM 3	0–1200V	Model depended	0
P89.19	Rated current of SM 3	0.8–6000.0A	Model depended	0
P89.20	Stator resistance of SM 3	0.001–65.535Ω	Model depended	0
P89.21	Direct-axis inductance of SM 3	0.01–655.35mH	Model depended	0
P89.22	Quadrature-axis inductance of SM 3	0.01–655.35mH	Model depended	0
P89.23	Counter-emf constant of SM 3	0–10000V	300V	0
P89.24	Initial pole position of SM 3 (reserved)	0x0000-0xFFFF	0x0000	•
P89.25	Identification current of SM 2 (reserved)	0%–50% (of the motor rated current)	10%	•
P89.26	Overload protection selection of motor 3	No protection Common motor (with low-speed compensation) Frequency-variable motor (without low-speed compensation)	2	0
P89.27	Overload protection coefficient of motor 3	20.0%–150.0%	100.0%	0
P89.28	Power display calibration coefficient of motor 3	0.00–3.00	1.00	0

Function code	Name	Description	Default	Modify
P89.29	Parameter display of motor 3	0–1 0: Display by motor type 1: Display all	0	0
P89.30	System inertia of motor 3	0–30.000kgm²	0.000	0
P89.31	Speed control switchover mode of motor 3	0–3 0: No switchover, which indicates keeping consistent with P00.00 of motor 1 1: Switch to SVC1 2: Switch to VF 3: Switch to FVC	0	0

Group P90--Functions special for cranes

Function code	Name	Default	Modify	
P90.00	3 3	0–40 0: Common application mode	0	0
P90.01	Setting of hoisting application macro 2	1: Lifting mode 1 (in open-loop vector control) 2: Lifting mode 2 (in closed-loop vector control) 3: Horizontal moving mode (in space voltage vector control) 4: Tower crane slewing mode 5: Conical motor application mode 6: User-defined application macro 1 (when P90.02=1) 7: User-defined application macro 2 (when P90.02=2) 8: User-defined application macro 3 (when P90.02=3) 9: Lifting mode 3 (in space voltage vector control) 10: Construction elevator mode 11: Closed-loop winching (for lifting in mineral wells and winches) 12: Open-loop winching (for lifting in mineral wells and winches) 13: Construction elevator mode 2 (for medium-speed elevator application)	0	0

Function code	Name	Description	Default	Modify
		14: Tower crane slewing without using an eddy current controller in closed-loop vector control 15: Tower crane slewing without using an eddy current controller in space voltage vector control 16–40: Reserved		
P90.02	User-defined application macro setting	0–3 1: Enter the settings of user-defined application macro 1 2: Enter the settings of user-defined application macro 2 3: Enter the settings of user-defined application macro 3	0	0
P90.03	Switchover selection for hoisting application macros 1 and 2	0–5 0: No switchover 1: Switch from motor 1 to motor 2 When the S terminal selects function 35 and takes effect, and P90.03=1, the macro parameter is switched from P90.00 to P90.01, and motor parameters are automatically switched. 2: Switch from motor 1 to motor 3 When the S terminal selects function 88 and takes effect, and P90.03=2, the macro parameter is switched from P90.00 to P90.01, and motor parameters are automatically switched. 3: Switch from the master to the slave When the S terminal selects function 72 and takes effect, and P90.03=3, the macro parameter is switched from P90.00 to P90.01, and the master/slave switchover is automatically performed. 4: Switch from the salve to the master When the S terminal selects function 71 and takes effect, and P90.03=4, the macro parameter is switched from P90.00 to P90.01, and the master/slave switchover is	0	0

Function code	Name	Description	Default	Modify
		automatically performed. 5: Switch to SVC1 control (open-loop vector control 1) When P90.03=5, P90.00 must be 2, while P90.01 must be 1; alternatively, P90.00 must be 11, while P90.01 must be 12. Only control mode can be switched, and the S terminal selects function 62 and takes effect. Note: When P90.03=1 or 2, function macros can be switched over through communication, of which mode is set by P08.31.		
P90.04	Enabling brake-oriented logic	0-1 0: The brake is controlled by an external controller. 1: The brake is controlled by the VFD.	0	0
P90.05	Enabling forward torque for reverse-running start/stop	Ox00–0x11 Ones place: indicates whether to enable forward torque for reverse-running start 0: Disable (The reverse-running start direction complies with the command.) 1: Enable (The reverse-running start direction is always the forward-running direction.) Rev Start FWD torque disabiling REV Start FWD torque enabling REV Start FW	0x00	0

Function code	Name			ı	Descr	iption			Default	Modify
Sout		Output frequence When is en	command REV Stop command REV Stop							
P90.06	Graded multi-step speed reference 0	Grade	d refe	rence	is a s	peed i	drive the reference raded re	method	0.0%	0
P90.07	Graded multi-step speed reference 1	suppo	rts the	grad	ed op	eratino	g lever m Graded re	ode and	0.0%	0
P90.08	Graded multi-step speed reference 2		•		•	•	by com ce termina	•	0.0%	0
P90.09	Graded multi-step speed reference 3	Grade	d refe	rence	termir	nal	as follow	s:	0.0%	0
P90.10	Graded multi-step speed reference 4	Termin al 1	Termin al 2	Termin al 3	Termin al 4	Termin al 5	setting	Function code	0.0%	0
		OFF	OFF	OFF	OFF	OFF	Graded setting 0 Graded setting 1	P90.06		
		ON	ON	OFF	OFF	OFF	Graded setting 2	P90.08		
		ON	ON	ON	OFF	OFF	Graded setting 3 Graded	P90.09		
P90.11	Graded multi-step	ON	ON ON	ON ON	ON	OFF	setting 4 Graded	P90.10	0.0%	0
P90.11	speed reference 5	ON Set P			on r P00	ON .07=1	setting 5 5. The m	P90.11 nulti-step	0.0%	
		speed P25, speed (P00.0 P90.0	settin which s ar 03: ma 6, P9	can e sp ix. frec 90.07, ng ran	ninals selec ecified quency P90 ge: 0.	are sp t func d by /). .08, 0–100	pecified by tions 77 P90.06	y P05 or –8. The –P90.11		

Function code	Name	Description	Default	Modify
		grade can be closed only after the multi-step settings of all lower grades are closed.		
P90.12	Forward brake release current	The brake timing diagram in V/F mode is as follows:	0.0%	0
P90.13	Reverse brake release current	PWO/REV Num Stop Start Stop	0.0%	0
P90.14	Forward brake release torque	FIND coding of the coding of t	0.0%	0
P90.15	Reverse brake release torque	Tollow Verificated Ots Brake Command Close Release Close	0.0%	0
P90.16	Forward brake release frequency	REV brake 15 1% REV brake closing stepasory toposory	2.50Hz	0
P90.17	Reverse brake release frequency	Tologial verification (RE Maintenance required during — Policy (CA)	2.50Hz	0
P90.18	Forward brake closing frequency	Brailer (Close Release Close Clo	1.50Hz	0
P90.19	Reverse brake closing frequency	Brake action T1. Delay before foreused brake missas PR0.20 T2. Delay before foreused brake missas PR0.20 T3. Delay before foreused brake missas PR0.21 T3. Delay before foreuse brake missas PR0.21 T3. Delay before foreuse brake missas PR0.21 T3. Delay before foreuse brake missas PR0.21 T3. Delay before foreuse brake missas PR0.21 T3. Delay before foreuse brake missas PR0.21 T3. Delay before foreuse brake missas PR0.21 T3. Delay before foreuse brake missas PR0.21 T4. Delay before foreuse brake missas PR0.21 T5. Delay before foreuse brake missas PR0.22 T5.	1.50Hz	0
P90.20	Delay before forward brake release	Tis. Delay after reverse behave refuses PR0.33 Tis. Belay after reverse brake closing PR0.27 Tis. Maintenance frequency hold time during DCF PR0.29 Among the reverse brake closing PR0.27 Usee forward-running timing sequence as example:	0.000s	0
P90.21	Delay before reverse brake release	Start: When the VFD is in standby state, the brake output signal is closed. After receiving the running command, the VFD accelerates with	0.000s	0
P90.22	Delay after forward brake release	the target frequency P90.16. In addition, the VFD starts torque verification, if the verification	0.300s	0
P90.23	Delay after reverse brake release	is OK (condition: output current>= P90.12) (it is P90.13 in reverse running) and output torque >= P90.14 (it is P90.15 in reverse	0.000s	0
P90.24	Delay before forward brake closing	running), output frequency is at least equal to P90.16 (it is P90.17 in reverse running), the delay before forward brake release starts, and	0.000s	0
P90.25	Delay before reverse brake closing	the VFD outputs the brake release signal when P90.20 (or P90.21 in reverse running) is reached. Then the delay after forward brake	0.000s	0
P90.26	Delay after forward brake closing	release starts. The VFD normally accelerates to the set frequency within the time specified by	0.300s	0
P90.27	Delay after reverse	P90.22 (or P90.23 in reverse running).	0.000s	0

Function code	Name	Description	Default	Modify
	brake closing	Stop: To prevent hook slip, sufficient output		
P90.28	Retaining frequency for stop	torque must be ensured before brake is closed. After receiving the stop command, the VFD	5.00Hz	0
P90.29	Retaining frequency hold time for stop	decelerates to P90.28 with a maintenance frequency within P90.29. When output frequency <= P90.18 (or P90.19 in reverse	0.000s	0
P90.30	Torque verification fault detection time	running), the delay before brake release starts. When the delay reaches P90.24 (or P90.25 in reverse running), the VFD outputs brake closing signal. The delay after brake release starts. The VFD decelerates to zero and stops within the time P90.26 (or P90.27 in reverse running). P90.12, P90.13setting range: 0.0–200.0% (of the motor rated current) P90.14, 0.15 setting range: 0.0–200.0% (of the motor rated current) P90.16, P90.17, P90.18, P90.19 setting range: 0.00–100.0% P90.20, P90.21, P90.22, P90.23, P90.24, P90.25, P90.26, P90.27 setting range: 0.000–5.000s Note: If reverse-running delay is 0, the forward-running delay is used. Setting range of P90.28: 0.00–50.00Hz Setting range of P90.29: 0.000–5.000s Setting range of P90.30: 0.000–10.000s	6.000s	0
P90.31	Enabling the monitoring on brake status	Setting range of P90.31: 0–1 0: Disable 1: Enable the brake current monitoring (and	0	0
P90.32	Brake feedback exception delay (brake feedback detection time)	brake feedback detection). When the function is disabled, no brake feedback fault is reported. After it is enabled, brake status can be monitored.	1.000s	0
P90.33	Brake monitoring current threshold	In open-loop mode: If the actual brake status is different from the S-terminal given brake feedback signal during running or stop, the	100.0%	0
P90.34	Enabling speed reference under brake status error	brake feedback fault (FAE) is reported after the brake feedback exception delay P90.32. In closed loop mode: When stopping, a fault will	0	0

Function code	Name	Description	Default	Modify
P90.35	Speed reference under brake status error	be reported directly after P90.32 brake feedback abnormal delay if the brake feedback is abnormal. When running, the current will be monitored after the P90.32 brake feedback abnormal delay if the brake feedback is abnormal. If the present current is less than the brake monitoring current, it is considered that the brake is not closed at this time, which will be carried out according to the action set by P90.34. When P90.34=0, the brake feedback fault (FAE) is reported. When P90.34=1, open the brake and run at the speed specified by P90.35, and report the brake feedback alarm (A-FA) simultaneously. Frequency P90.35 In closed-loop mode: During running, if a brake feedback exception occurs, the VFD starts monitoring current after the brake feedback exception delay P90.32. If the present current is greater than the brake monitoring current, the present actual frequency is checked. If the actual frequency during forward rotating or the actual frequency during reverse rotating, it is considered that the brake has been closed, the brake feedback fault (FAE) is reported.	5.00Hz	0

Function code	Name	Description	Default	Modify
		Start/stop Command Start/stop Command Brake Seedback Selfing range of P90.32: 0.00–20.00s Setting range of P90.33: 0.0%–200.0% (100.0% corresponding to the motor rated current) Setting range of P90.34: 0–1 0: Disable (Report the brake feedback fault FAE directly) 1: Enable brake status error speed giving (Report the brake feedback alarm A-FA simultaneously) Setting range of P90.35: 0.00–50.00Hz		
P90.36	Jog braking type	0x00–0x11 Ones place: Brake release type 0: Same as hoisting-oriented brake release frequency 1: Same as jog frequency Tens place: Brake closing type 0: Same as hoisting-oriented brake closing frequency 1: Same as jog frequency 2: Same as hoisting-oriented brake release frequency:	0x00	©

Function code	Name	Description	Default	Modify
		Cuput frequency P08.06 P90.18		
P90.37	Brake selection for forward/reverse switchover	0–1 0: No switchover 1: Switchover When P90.37=0, the switchover is performed directly, and the brake does not act. Output frequency When P90.37=1, during the switchover, the VFD decelerates with braking to stop, and then opens the brake to run in reverse direction.	0	©

Function code	Name	Description	Default	Modify
	Restart selection	Setting range of P90.38: 0–1		
P90.38	during braking	0: No restart during braking	0	0
P90.39	Wait time for restart	During the stop, if the brake closing command has been output, the system does not accept any new startup commands, and it can be restarted with a wait time of P90.39 after the brake is closed and VFD stops. 1: Restart allowed during braking Output frequency Though the brake closing command has been output during stop, the VFD accepts a new start command. Setting range of P90.39: 0.0–10.0s	0.5s	0
P90.40	Braking method in open-loop vector control	0-3 0: Common mode 1: Torque mode with limit 1 The limit is specified by P90.41. 2: Torque/speed switchover mode 1 (boost with braking) It is used when P90.04=1 since the brake is involved. When the brake is opened, the speed	0	0

Function code	Name	Description	Default	Modify
		mode is automatically used. 3: Torque/speed switchover mode 2 (horizontal moving) Since the brake is not involved, the torque/speed switchover is set through P90.44. The set frequency needs to be greater than P90.44.		
P90.41	Brake release/closing torque limit in vector control	Setting range: 0.0–300.0% (of the motor rated current) During the vector control in speed mode, the torque amplitude is limited within the delay time before brake release, after brake release, before brake closing, or after brake closing.	250.0%	0
P90.42	Torque setting for brake release	0.0–200.0% During running, when the torque feedback value is greater than or equal to P90.42, it enters the brake release timing. (It is valid only when P90.04=1, which indicates the brake is controlled by the VFD, and the VFD uses the torque mode.)	50.0%	0
P90.44	Brake closing delay after stop DC braking starts	0.00–50.00Hz Used in torque/speed switchover mode 2	8.00Hz	0
P90.45	Torque verification mode	0–1 0: Mode 0 1: Mode 1	0	0
P90.46	ACC/DEC time switchover selection for REV rotation	0–2 0: No switchover (Same as ACC/DEC time for FWD rotation.) 1: Switch to the DEC time. (P08.05 is used.) 2: Switch the ACC/DEC time. (P08.04 and P08.05 are used.)	0	0

Group P91—Functions special for cranes

Function code	Name	Description	Default	Modify
P91.00	conical motor	The conical motor does not require external braking since it implements braking by using internal magnetic flux control. During start, the	0	©
P91.01	Conical motor ACC	starting frequency needs to be increased for	120.0%	0

Function code	Name	Description	Default	Modify
	process voltage coefficient K1	brake release. During stop, quick demagnetizing needs to be implemented to		
P91.02	Conical motor constant process voltage coefficient K2	prevent slip in case of overdue brake closing. Setting range of P91.00: 0–1 0: Disable 1: Enable P91.00=0: Disable. Normal voltage curves are	100.0%	0
P91.03	Conical motor DEC process voltage coefficient K3	used. P91.00=1: Enable. Conical motor voltage curves are used. Setting range of P91.01: P91.02 –150.0% (100.0% corresponding to the motor rated voltage) Setting range of P91.02: P91.03–P91.01 Setting range of P91.03: 0.0–P91.02 Output frequency Rated frequency Rated frequency P91.02 Output voltage V (%) P91.01 P91.02 P91.03 Tocque boost voltage (%) Start command Brake action The conical motor function is used simultaneously with the multi-dot V/F function.	80.0%	0

Function code	Name	Description	Default	Modify
		Output Prequency Rated Product Pod.07 Pod.05 Pod.03 Pod.07 Pod.07 Pod.05 Pod.07		
P91.04	Contactor control selection	0-1 0: Controlled by an external controller 1: Controlled by the VFD	0	0
P91.05	Contactor feedback detection time	0.00–20.000s	1.000s	0
P91.06	Enabling operating lever zero point position detection	0x00–0x11 Ones place: 0: Disable zero point position detection 1: Enable zero point position detection Tens place: 0: Do not detect Al2 after zero position detection 1: Detect Al2 after zero position detection	0x00	0
P91.07	Operating lever zero point position delay	After the zero position detection signal is enabled, the terminal zero position signal is given in stop state, the zero position detection is completed (valid) with a delay specified by P91.07, the zero position signal is released, and the VFD runs only after being given with the running command. After the zero position	0.300s	0

Function code	Name	Description	Default	Modify
code	Name	signal detection takes effect, if both the zero position signal and running command signal are detected, the operating lever zero position fault STC is reported. If the running command is given during zero position detection, the VFD does not respond. If both the zero position signal and running command signal still exist after zero position detection, the operating lever zero position fault STC is also reported. If the zero position signal is removed suddenly during zero position detection, the VFD does not respond to the running command since zero position detection is incomplete. VFD running Run Stop Enable Position detection is incomplete. VFD running Run Stop Enable Position detection is incomplete.	Default	incuriy
		FWD/REV command VFD fault status Normal STC fault		
		After the VFD stops, the VFD starts zero position detection. When the zero position detection delay is reached, if the detection finds that Al2 is greater than 1.00V, the analog speed reference deviation fault AdE is reported.		

F ('				
Function code	Name	Description	Default	Modify
code		VFD running status Enabling zero position detection S terminal zero position signal input zero position signal input zero position detection Analog Al2 VFD fault status Normal AdE fault		
		Setting range: 0.000–10.000s		
P91.08	Light/heavy load speed regulation selection	 0-5 0: Disable 1: Constant power speed boost 2: Constant power speed limit 3: Stepped speed limit 4: Light load speed boost 1 (by set current and frequency) 5: Speed boost through external terminal signal 	0	0
P91.09	Light-load speed-boost target frequency setting	P91.08=4: Light load speed boost mode 1 (according to set current and frequency) Output frequency P91.09 P91.09 P1.09 P1.08 Light load speed boost after current verification success	70.00Hz	0
P91.10	Light-load speed-boost detection frequency	P00.10 ——————————————————————————————————	90.0%	0
P91.11	Light-load speed-boost current detection time	Output Current P91.12 or P91.13	1.000s	0
P91.12	FWD light-load speed-boost current detection	Light load speed boost after current verification	60.0%	0

P91.13 Success Output frequency P91.10 Motor rated frequency P91.10 No light load speed boost due to current verification failure If light load speed boost mode 1 is enabled, processing for light load speed boost is performed only when the set frequency is no less than P02.02 (Motor rated frequency). After running, if the ramp frequency is equal to or greater than P91.10, current is detected and count starts. When P91.11 is reached, if the current detection value P91.13 P91.13 Value Success No light load speed boost due to current verification failure If light load speed boost mode 1 is enabled, processing for light load speed boost is performed only when the set frequency is no less than P02.02 (Motor rated frequency). After running, if the ramp frequency is equal to or greater than P91.10, current is detected and count starts. When P91.11 is reached, if the current is less than P91.12 (or P91.13 in reverse running), the current detection passes, the VFD increases the frequency to P91.09. If the current detection fails, the VFD remains the original frequency.	Function	Name	Description	Default	Modify
No light load speed boost due to current verification failure If light load speed boost mode 1 is enabled, processing for light load speed boost is performed only when the set frequency is no less than P02.02 (Motor rated frequency). After running, if the ramp frequency is equal to or greater than P91.10, current is detected and count starts. When P91.11 is reached, if the current detection value P91.12 (or P91.13 in reverse running), the current detection passes, the VFD increases the frequency to P91.09. If the current detection fails, the VFD remains the original frequency.	code				
frequency setting must be higher than the set frequency. Otherwise, speed boost cannot be implemented although the conditions are met. If the set frequency is higher than P91.10, the original frequency is remained. Setting range of P91.09: 0.00–100.00Hz P91.10 setting range: 50.0%–100.0% (of the motor rated frequency) Setting range of P91.11: 0.0–10.000s	code	value REV light-load speed-boost current detection	Success P00.10 Motor rated frequency P91.10 No light load speed boost due to current verification failure No light load speed boost due to current verification failure If light load speed boost mode 1 is enabled, processing for light load speed boost is performed only when the set frequency is no less than P02.02 (Motor rated frequency). After running, if the ramp frequency is equal to or greater than P91.10, current is detected and count starts. When P91.11 is reached, if the current is less than P91.12 (or P91.13 in reverse running), the current detection passes, the VFD increases the frequency to P91.09. If the current detection fails, the VFD remains the original frequency. Note: The light-load speed-boost target frequency setting must be higher than the set frequency. Otherwise, speed boost cannot be implemented although the conditions are met. If the set frequency is remained. Setting range of P91.09: 0.00–100.00Hz P91.10 setting range: 50.0%–100.0% (of the motor rated frequency)		Modify

Function code	Name	Description	Default	Modify
		Note: Light load speed boost mode 1 is applicable to the open-loop mode.		
P91.14	Heavy-load speed-limit detection frequency	Output A frequency Set frequency or speed limit frequency	40.00Hz	0
P91.15	Heavy-load speed-limit detection delay	When the set frequency is greater than the heavy load speed-limit detection frequency (P91.14), the motor running frequency becomes stable after reaching the detection frequency (P91.14), and load detection is performed after the time specified by P91.15. The load detection value is used for heavy load speed limit calculation. The load detection value P94.01 can be viewed through the keypad. Setting range of P91.14: 0.00Hz–P02.02 Setting range of P91.15: 0.00–5.00s Setting range of P94.01: 0.0% –150.0% (of the motor rated torque)	0.35s	0
P91.16	Electromotive power upper limit of constant-power speed boost/limit	P00.03 Max. output frequency Frequency Limited frequency corresponding to the load	90.0%	0
P91.17	Electricity generation power upper limit of constant-power speed boost/limit	film P91.14 Constant power speed limit frequency = Power upper limit * Motor rated frequency/Load detection value The constant power mode is used for speed adjustment. The constant power speed limit frequency under the present load is calculated	100.0%	0

Function	Name	Description	Default	Modify
code	Hamo	2000 i piloti	Dordan	cay
		by using algorithms (using P91.16, P91.17, and		
		P94.01 for reference).		
		1. When P91.08=1, in constant power speed		
		boost mode, if the constant power speed limit		
		frequency is lower than or equal to the		
		frequency upper limit P00.04, the VFD runs at		
		the constant power speed limit frequency. At the		
		same time, if the set frequency is higher than or		
		equal to the constant power speed limit		
		frequency, the speed is limited at constant		
		power; if the set frequency is lower than the		
		constant power speed limit frequency, the		
		speed boosts.		
		2. When P91.08=2, in constant power speed		
		limit mode, if the constant power speed limit		
		frequency is lower than or equal to the		
		frequency upper limit P00.04: if the set		
		frequency is higher than or equal to the		
		constant power speed limit frequency, the		
		speed is limited at constant power; if the set		
		frequency is lower than the constant power		
		speed limit frequency, the set frequency is used		
		for running.		
		For example, when P00.03=100Hz,		
		P91.16=90.0%, and motor rated		
		frequency=50.00Hz:		
		If the detected load value during motor upward		
		running is 30.0%, the limited frequency=150Hz		
		(90.0%*50.00Hz/30.0%), the calculated limited		
		frequency is higher than P00.03. If P91.08=1,		
		the set frequency P00.03 is used for running. If		
		P91.08=2, the constant power speed limit		
		frequency does not work, and the set frequency		
		is used for running.		
		If the detected load value during motor upward		
		running is 60.0%, the limited frequency = 75Hz		
		(90.0%*50.00Hz/60.0%), the heavy load speed		
		limit function works. The upward max. output		

Function				
code	Name	Description	Default	Modify
		frequency is limited to 75Hz. If P91.08=1, the frequency 75Hz is used for running. If P91.08=2, the max. running frequency is 75Hz, and the set frequency is used for running. The similar calculation method is applicable to motor downward running, only replacing P91.16 with P91.17. Note: During open/closed loop switchover (there is difference in load detection value), adjust P91.16 and P91.17, and the heavy load speed limit frequency cannot be lower than the heavy load speed limit detection frequency P91.14. P91.16, P91.17 setting range: 30.0%–120.0% (of the motor rated power)		
P91.18	Load limit T1 in stepped speed limit upward running	Limited frequency f Max. output frequency P00.03 P91.23 (f3)	70.0%	0
P91.19	Restricted frequency f1 in stepped speed limit upward running	(T3) (T2) (T1) T _{max} When the stepped speed limit mode is used,	50.00Hz	0
P91.20	Load limit T2 in stepped speed limit upward running	the limit parameters for upward running and for downward running are set separately and can be adjusted according to the actual situation. When the detected load (open-loop output	45.0%	0
P91.21	Restricted frequency f2 in stepped speed limit upward running	current or closed-loop output torque) exceeds the limited value, the running frequency must be lower than the set restricted frequency. For example, during motor upward running, when the detected load is greater than P91.18,	75.00Hz	0
P91.22	Load limit T3 in stepped speed limit upward running	the frequency is restricted to P91.19 (or when the set frequency is less than P91.19, the running frequency is the set frequency). When the detected load is greater than P91.20 (but less than P91.18), the frequency is restricted to		0
P91.23	Restricted	ness than r a r. 10), the frequency is restricted to	100.00Hz	0

Function	Name	Description	Default	Modify
code	frequency f3 in	P91.21.		
	. ,	The detected load values in open/closed loop		
	upward running	state have deviation. During the open/closed		
		loop switchover process, the load limit value		
	,	can be adjusted through P91.24. P91.24 is valid		
P91.24	gain in stepped	, 0	0.0%	0
		for P91.18, P91.20, and P91.22. For example, when the same load is carried		
	running	• •		
	Torque limit	,		
P91.25	adjusted gain in		0.0%	0
		open-loop state, there is a difference of 5%. In		
	asg	the actual use, after setting closed-loop		
	Load limit T1 in	parameters, if you need to switch to the		
P91.26		open-loop state, you only need to set P91.24 to	55.0%	0
	downward running	5.0% (0 in closed-loop state), and you do not		
	Restricted	need to modify P91.18, P91.20, or P91.22.		
P91.27	frequency f1 in	The situation of downward running is similar	50.00Hz	0
	stepped speed limit	and therefore you only need to set parameters		
	downward running	related to downward running.		
	Load limit T2 in	Note: The heavy load speed limit frequency		
P91.28	stepped speed limit	cannot be lower than P91.14 .	48.0%	0
	downward running	P91.18, P91.20, P91.22, P91.26, P91.28,		
	Restricted	P91.30 setting range: 0.0%–150.0%		
P91.29	frequency f2 in	(Open-loop output current is relative to the	75.00Hz	0
1 01.20	stepped speed limit	motor rated current, while closed-loop output	70.00112	0
	downward running	torque is relative to the motor rated torque.)		
	Load limit T3 in	P91.19, P91.21, P91.23, P91.27, P91.29,		
P91.30	stepped speed limit	P91.31 setting range: 0.00–P00.04	25.0%	0
	downward running	P91.24, P91.25 setting range: -20.0%-20.0%		
	Restricted	(Open-loop output current is relative to the		
P91.31	frequency f3 in	motor rated current, while closed-loop output	100.00Hz	0
F91.31	stepped speed limit	torque is relative to the motor rated torque.)	100.00HZ	0
	downward running			
	Enabling frequency	Fraguency decrease with voltage indicates that		
P91.32	decrease with			0
	voltage	the VFD can automatically decrease the output		
P91.33	Starting voltage of	frequency to maintain torque output in case of low line or bus voltage.	85.0%	0
F91.33	frequency	now line of bus voltage.	05.0%	O

Function code	Name	Description	Default	Modify
code	decrease with voltage	The following assumes that the target frequency is set as the rated frequency. When P91.32=1, if the bus voltage is less than the starting frequency (Standard bus voltage*P91.33), output frequency is (Rated frequency*Present bus voltage/Standard bus voltage increases but it does not reach the restoration voltage (Standard bus voltage*P91.33+5%), the output frequency remains unchanged; if the bus voltage continuously decreases, the output frequency remains unchanged; if the bus voltage continuously decreases; if the bus voltage rises and becomes greater than the restoration voltage, the output frequency increases to the rated frequency. Setting range of P91.32: 0–1 O: Disable	Default	Modify
		1: Enable Setting range of P91.33: 70.0%–95.0% (Standard bus voltage 537V)		
P91.34	DEC position limit mode	0–1 0: Single direction limit 1: Bi-directional limit	0	0

Function code	Name	Description	Default	Modify
		Downward limit position limit: When the upward slow speed area is entered, the system runs at P91.35 and stops at sudden if the upward limit position is reached; the upward slow speed is not restricted, but the downward speed is not restricted. Downward DEC position limit uses the similar rule. Bi-directional limit: When the upward/downward DEC limit position is reached; the upward speed is not restricted. Downward DEC position limit uses the similar rule. Bi-directional limit: When the upward/downward DEC limit position is reached, the upward/downward slow speed zone is entered, which indicates that both the upward and downward speeds are limited. (Terminal command mode)		
P91.35	DEC position limit restricted frequency	0.00–20.00Hz	10.00Hz	0
P91.37	Enabling HDO based eddy current control for tower crane slewing	0–1 0: Keep HDO setting same as P06.00 setting. 1: HDO is used as PWM signal for voltage adjustment output. P91.37=1: Enable the eddy current control for tower crane slewing. HDO connects to the PWM input of the eddy current control module. You can enable the output voltage of the eddy current control module to change with the frequency by setting P91.38–P91.47.	0	0
P91.38	Frequency f0	P91.38 setting range: P91.40-P00.03 (Max.	50.00Hz	0

Function code	Name	Description	Default	Modify
P91.39	Duty ratio corresponding to frequency f0	output frequency) Setting range of P91.40: P91.42–P91.38 Setting range of P91.42: P91.44–P91.40	100.0%	0
P91.40	Frequency f1	Setting range of P91.44: P91.46–P91.42	40.00Hz	0
P91.41	Duty ratio corresponding to frequency f1	Setting range of P91.46: 0.00Hz–P91.44 P91.39, P91.41, P91.43, P91.47 setting range: 0.0%–100.0% Segmented adjustment is performed based on	80.0%	0
P91.42	Frequency f2	the cycle ratio and frequency.	20.00Hz	0
P91.43	Duty ratio corresponding to frequency f2	P91.49 P91.49	40.0%	0
P91.44	Frequency f3	P9145	10.00Hz	0
P91.45	Duty ratio corresponding to frequency f3	P91.43 P91.44 P91.42 P91.40 P91.38 Frequency Note: The HDO output polarity is specified	20.0%	0
P91.46	Frequency f4	by P06.05.	0.00Hz	0
P91.47	Duty ratio corresponding to frequency f4		0.0%	0
P91.48	HDO carrier frequency	0.5–10.0kHz	1.0kHz	0
P91.49	HDO closing delay during stop	0–100.0s	5.0s	0
P91.50	Pre-torque input signal source and effective period	0x00–0x17 Ones place: Input signal source 0: Invalid 1: Al1 2: Al2 3: Modbus 4: Internally given 5: PROFIBUS/CANopen/PROFINET communication 6: Reserved 7: Keypad Tens place: Pre-torque action effective period 0: During brake release in VFD brake control 1: When the given pre-torque changes Note (when the tens place is 1):	0x00	0

Function	Name	Description	Default	Modify
code		2000.p.io.i		
		 If the given pre-torque changes during operation, the actual pre-torque compensation value is the difference between the present given value and the last pre-torque given value. A negative change value indicates negative torque compensation. When the pre-torque given value is 0, the actual pre-torque is not the amount of change from the last time, but the pre-torque is invalid. As long as the operation command is given, the pre-torque compensation value will take effect even if the given frequency is 0Hz. When the synchronous motor is started for the first time, the pre-torque compensation function will not take effect until the present magnetic pole angle is found through static 		
	5 . " .	identification.	2.22/	
P91.51	Pre-torque offset	In closed-loop mode:	0.0%	0
P91.52	Drive-side gain	Setting pre torque is to output the torque	1.000	0
P91.53	Braking-side gain	corresponding to load weight in advance so as to reduce the start impact and prevent reserve driving or slip during start. Setting P91.51 is to eliminate the impact of mechanical counterweight for lifting; pre-torque compensation is directly performed if there is no mechanical counterweight. Pre-torque compensation value = K*(P91.50 – P91.51), in which K= P91.52 when the motor is in electromotive state and K= P91.53 when the motor is in power generation (braking) state. Setting range of P91.51: -100.0-100.0% Setting range of P91.52 and P91.53: 0.000-7.000	1.000	0
P91.54	Pre torque direction	0–1 0: Forward 1: Reverse	0	0

Function code	Name	Description	Default	Modify
P91.55	Pre torque keypad setting value	0.0–300.0%	0.0%	0
P91.56	Enabling rope tracking	P91.55: 0–1 P91.56: 0.00–50.00Hz	0	0
P91.57	Rope-tracking speed boost frequency	P91.57: 0.000–10.000s P91.58: 0.00–120.0% When the rope tracking function has been	25.00Hz	0
P91.58	Delay when rope-tracking frequency reached	enabled, if the set frequency is lower than the rope tracking frequency, the VFD boosts to the rope tracking frequency after startup and takes a delay later. When the delay is reached, the	1.000s	0
P91.59	Rope-tracking torque	VFD calculates the output torque. If the output frequency is greater than the preset torque (empty-load torque usually), the VFD considers the rope is too tight. Then the frequency is decreased to the set frequency. Running command Output frequency P91.56 Set frequency P91.58 Note: This function is mainly applicable to tower crane trolleys.	40.0%	0

Group P92—Hoisting protection function group 3

Ξ.	Fredp 1 02 Training protection function group o							
	Function code	Name	Description	Default	Modify			
	P92.00	voltage protection,	0x000–0x111 Ones place: Low-voltage protection enabling 0: Disable 1: Enable Used together with P92.01 to perform low	0x000	0			

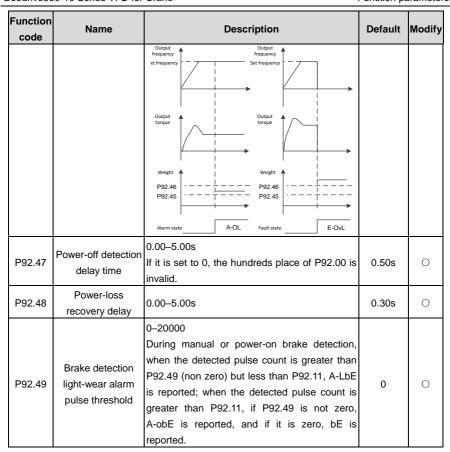
Function code	Name	Description	Default	Modify
	input power loss detection	voltage protection. Tens place: Power-on brake detection enabling 0: Disable 1: Enable Used together with P92.08–P92.11 to perform power-on brake detection in closed-loop vector mode. Hundreds place: 3PH input power loss detection 0: Disable 1: Enable Used together with P92.47 to perform 3PH input power loss detection.		
P92.01	Low voltage protection point	When P92.00 ones place=1, if the bus voltage is less than (P92.01*Motor rated voltage), low voltage protection is started, the VFD decelerates to stop. If the bus voltage restores to a value greater than (P92.01*Motor rated voltage + 20V), low voltage protection is automatically disabled. Setting range of P92.01:1.00–1.30	1.05	0

Function code	Name	Description	Default	Modify
P92.02	Low-speed run protection time	Low-speed run protection is applied to devices to which long-time low speed running is not applicable, preventing overheating caused by late dissipation.	0.000s	0
P92.03	Setting of low-speed run frequency	Running Command Low speed protection output When P92.02 is a non-zero value, low-speed running protection is enabled, if the running frequency of the VFD is equal to or less than P92.03, and the last time is equal to or greater than P92.02, the VFD reports a low-speed running protection fault (LSP). Setting range of P92.02: 0.000–50.000s Setting range of P92.03: 0.00–20.00Hz	5.00Hz	0
P92.04	Overload protection current detection value	When P92.38=1 overload protection is enabled. When P92.04>0, if the ramp frequency is equal to or greater than (P90.16+2.00Hz) during	0.0%	0
P92.05	Overload detection time	upward running, the VFD starts checking the current (closed-loop torque current or open-closed output current). If the current is equal to or greater than P92.04, the VFD reports the overload protection alarm after the detection time reaches P92.05. This restriction is not applicable to downward running.	0.5s	0

Function code	Name	Description	Default	Modify
		Output frequency P90.16+2Hz P90.16 Torque current % P92.04		
		Relay output A-OL Setting range of P92.04: 0.0–150.0% (relative to the motor rated torque in closed-loop state; relative to the motor rated current in open-loop		
		state; 0 indicates disabling) Setting range of P92.05: 0.0–5.0s		
P92.06	Brake detection reminding interval	When P92.06>0, the brake detection reminding function is enabled, if the accumulative running	0.0	0
P92.07	Brake detection reminding hold time	time of the VFD is equal to or greater than P92.06, the signal indicator is controlled through relay output signal or braking detection is reminded through the buzzer. The reminding hold time is specified by P92.07. After the time elapsed, reminding is not performed until re-power on. Setting range of P92.06: 0.0–1000.0h Setting range of P92.07: 0–100min	5	0
P92.08	Brake detection torque setting	In open-loop control: Set a fixed torque and frequency and run the VFD. Through visual	100.0%	0
P92.09	Brake detection frequency setting	inspection, if the brake is not opened within the detection time, braking is normal. Otherwise,	2.00Hz	0
P92.10	Brake detection time setting	braking is abnormal. In closed-loop control mode, there are two startup situations:	1.5s	0
P92.11	Brake detection judging pulse threshold	Situation 1: When P92.00 tens place=1, brake detection is automatically performed after power-on.	1000	0

Function	Name	Description	Default	Modify
code	Nume	·	Delaalt	Modify
	(closed-loop)	Situation 2: When the braking force detection		
		terminal enabling signal is valid (terminal		
		function 85 is selected), the VFD keeps the		
		brake closed and enters the brake timing.		
		The detection logic is as follows:		
		The VFD runs with P92.08 at P92.09 and		
		detects the encoder pulse count. If the detected		
		encoder pulse count exceeds P92.11 within		
		P92.10, it is considered that braking force is		
		insufficient and slip risk may exist. Then the		
		multifunction output terminal outputs brake		
		failure signal and the brake slip fault and		
		outputs the brake failure fault (bE).		
		VFD status Fault (bE)		
		Encoder pulse		
		count P92.11		
		1		
		Frequency		
		P92.09		
		→		
		Torque current		
		% P92.10		
		P92.08		
		Valid		
		Brake detection S terminal		
		Note: If receiving a running command		
		during the detection, the VFD automatically		
		exits from detection and responds to the		
		running command.		
		Setting range of P92.08: 0.0 –180.0% (of the		
		motor rated torque)		
		Setting range of P92.09: 0.00–20.00Hz		
		Setting range of P92.10: 0.0–30.0s		
		Setting range of P92.11: 0–20000		
		<u> </u>		
	PT100/PT1000	0x00-0x11		
P92.12	temperature	Ones place: PT100 temperature detection	0x00	0
	detection enabling	0: Disable		
	g	1: Enable		

Function code	Name	Description	Default	Modify
		Tens place: PT1000 temperature detection		
		0: Disable		
		1: Enable		
		0x00–0x11		
	Enabling	Ones place: PT100 disconnection detection		
	PT100/PT1000	0: Disable		
P92.13	disconnection	1: Enable	0x00	0
	detection	Tens place: PT1000 disconnection detection		
		0: Disable		
		1: Enable		
	PT100 detected			
P92.14	overtemperature	0.0-150.0°C	120.0°C	0
	protection			
	threshold			
500.45	PT100 detected			
P92.15	overtemperature	0.0–150.0°C	100.0°C	0
	pre-alarm point			
500.40	PT1000 detected			
P92.16	overtemperature	0.0–150.0°C	120.0°C	0
	protection point			
D00 47	PT1000 detected	0.0.450.000	400.000	
P92.17	overtemperature	0.0–150.0°C	100.0°C	0
	pre-alarm point PT100/PT1000			
	calibrated			
P92.18	temperature upper	50.0–150.0°C	120.0°C	0
	limit			
	PT100/PT1000			
P92.19	calibrated	-20.0-50.0°C	20.0°C	0
1 32.13	temperature lower	-20.0-30.0 G	20.0 C	
	limit			
		0-4		
	Digital of	Normal detection PT100 lower limit digital calibration		
	PT100/PT1000	autotuning		
P92.20	calibrated	2: PT100 upper limit digital calibration	0	0
	temperature	autotuning		
	. ,	3: PT1000 lower limit digital calibration		
		autotuning		


Function				
code	Name	Description	Default	Modify
		4: PT1000 upper limit digital calibration autotuning After autotuning is completed, the function code is automatically cleared, and the calibration value is automatically saved to the I/O card.		
P92.21	PTC overtemperature selection	0–1 0: The PTC function is enabled through terminal selection. When the PTC detected overtemperature alarm A-Ptc is reported, this cannot terminate normal running. 1: The PTC function is valid through terminal selection. When the PTC overtemperature fault PtcE is reported, this results in stop.	0	0
P92.22	Type of sensor for Al to detect motor temperature	0-4 0: None 1: PT100 2: PT1000 3: KTY84 4: PTC (supporting only Al1)	0	0
P92.23	Al detected motor overtemperature protection threshold	0.0–200.0°C	110.0°C	0
P92.24	Al detected motor overtemperature pre-alarm threshold	0.0–200.0°C	90.0°C	0
P92.25	Input phase loss delay frequency at REV run	If the VFD runs in reverse direction, and the frequency is lower than P92.25, the phase loss	30.00Hz	0
P92.26	Input phase loss delay time at REV run	alarm is reported only when this situation lasts a time specified by P92.26. Setting range of P92.25: 0.00–50.00Hz Setting range of P92.26: 0.0–10.0s	0s	0

Function code	Name	Description	Default	Modify
P92.27	Anti-snag protection braking torque	Output P92.28 frequency P92.29 S-terminal	0.0%	0
P92.28	Braking torque ACC/DEC time	anti-snag protection command Output torque	0.200s	0
P92.29	Braking torque end frequency	Anti-snag indicates that the VFD outputs reserve torque so that the motor can stop at the fastest speed. A smaller value of P92.28 indicates a faster braking speed. When the motor decelerates to P92.29, the VFD stops. Setting range of P92.27: 0.0–300.0% (of the motor rated current) Setting range of P92.28: 0.000–10.000s Setting range of P92.29: 0.00–30.00Hz	0.10Hz	0
P92.30	Enabling set frequency protection	0-4 0: Disable 1: If Set frequency ≤ Brake closing frequency, the VFD reports A-rSF, and it closes the brake but does not stop. 2: If Set frequency ≤ Brake closing frequency, the VFD reports A-rSF, and it closes the brake and stops. 3: If Set frequency ≤ Brake closing frequency, the VFD reports SFE, and it closes the brake and stops. 4: If Set frequency ≤ P92.31, the VFD reports SFE, and it closes the brake and stops. After the function is enabled, if the brake is opened, detection protection is performed. When the set frequency is equal to or lower than the brake frequency or the value of P92.31, the system decreases the speed to the brake frequency or P92.31, and then performs the action specified by P92.30. It will not be detected when the brake is closed.	0	©

Function code	Name	Description	Default	Modify
P92.31	Set frequency fault protection threshold	0.00–10.00Hz	2.00Hz	0
P92.32	Current imbalance multiple	0.0–5.5 When the value is not zero, current imbalance detection is enabled. When the 3PH current max. value divided by the min. value is greater than this multiple, the Cuu fault is reported.	0.0	0
P92.33	Enabling overspeed fault detection	Setting range of P92.33: 0–1 P92.34 setting range: 100.0%–500.0% (of the set frequency)	0	0
P92.34	Overspeed fault value	The overspeed protection function can be enabled in open/closed loop vector mode, but in closed loop mode, the actual speed feedback comes from the encoder. When the overspeed protection function is enabled, the overspeed protection threshold of VFD is calculated, which is Set frequency * Overspeed protection percentage. When the VFD runs, if the actual frequency is greater than or equal to the protection threshold, the VFD considers it is in the overspeed state, reports an overspeed fault, and stops running.	150.0%	©
P92.35	Enabling stalling fault detection	Setting range of P92.35: 0–1 P92.36 setting range: 0.0 –250.0% (100.0%	0	0
P92.36	Stalling detection current value	corresponding to the motor rated current) Setting range of P92.37: 0.00–10.00s	200.0%	0
P92.37	Stalling detection time	The stalling protection function is valid only in closed-loop vector mode, but in closed loop mode, the actual speed feedback comes from the encoder. When the stalling protection function is enabled, if the target frequency is greater than 0.50Hz during VFD running, the VFD starts delay timing. When the preset time is reached, if the actual running frequency is still lower than 0.50Hz, and the output current is greater than the stalling protection current value, which lasts 20ms, the VFD considers	3.00s	0

Function code	Name	Description	Default	Modify
		stalling occurs, and then it reports the fault and stops running. Output frequency Set frequency 0.5Hz Output current P92.36 Fault state E-ds		
P92.38	Enabling overload	0-2 0: Disable 1: Torque overload, determined by P92.04 and P92.05. 2: Weight overload, determined by P92.39-P92.46.	0	0
P92.39	Weighing calibration	Setting range of P92.39: 0–2 0: Normal	0	0
P92.40	Peeled loading	1: Peeled autotuning	0.00t	0
P92.41		2: Loaded autotuning	0.00t	0
P92.42	Peeled torque	This parameter is automatically cleared after	0.0%	0
P92.43	Loaded torque	autotuning is completed. Setting range of P92.40: 0.0–20.00t Setting range of P92.41: 0.0–20.00t Setting range of P92.42: 0–250.0% (of the motor rated torque) Setting range of P92.43: 0–250.0% (of the motor rated torque) For peeled autotuning, when P92.39=1, the LED keypad displays "LoAd1". After pressing "Run", the autotuning starts, and the obtained torque value is automatically saved to P92.42. In addition, the VFD decelerates to stop. When the VFD stops, the LED keypad does not display "LoAd1". For loaded autotuning, when you have entered	0.0%	0

Function code	Name	Description	Default	Modify
		the weight to P92.41 and set P92.39=2, the LED keypad displays "LoAd2". After pressing "Run", the autotuning starts, and the obtained torque value is automatically saved to P92.43. In addition, the VFD decelerates to stop. When the VFD stops, the LED keypad does not display "LoAd2". Weight P92.41 P92.42 P92.43 Output torque		
P92.44	Mechanism rated load	0.0–20.00t 0–150.0% (of the mechanism rated load)	2.00	0
P92.45	Mechanism overload pre-alarm point	0–150.0% (of the mechanism rated load) When the weighing function is enabled, if the VFD reaches the constant speed running state,	90.0%	0
P92.46	Mechanism	the VFD output torque is obtained in real time, and then the present weight is calculated by using the torque and weight line simulated by weight autotuning. The weight is displayed through P94.37. If the present weight is greater than the protection point, the overweight fault is reported, and the VFD stops. If the present weight is less than the protection point but greater than the pre-alarm point, the overweight alarm is reported, but the VFD still runs. When the weighing function is enabled, the VFD displays the weight in real time during constant speed running; the VFD displays zero during ACC/DEC or stop.	105.0%	0

Group P93—Closed-loop hoisting functions

Function code	Name	Description	Default	Modify
P93.00	Brake slip speed deviation	0.50–1.00Hz Note: In FVC mode, when the detected feedback frequency is greater than the brake release frequency P93.00, which lasts P93.01, it considers that the brake slip fault bE occurs.	0.05Hz	0
P93.01	Braking slip fault delay time	0.000–5.000s The value 0 indicates brake slip is not detected, while a non-zero value indicates brake slip is	0.500s	0

Function code	Name	Description	Default	Modify
		detected. If the encoder feedback frequency is close to the brake release frequency, which lasts the time specified by P93.01, the brake failure fault (bE) is reported. For details, see the torque verifying and brake slip descriptions in the brake function commissioning section. 0x00–0x23		
P93.02	Zero servo protection mode and reset	Ones place: Zero servo protection mode selection 0: Disable zero servo 1: Lower slowly when zero servo is switched on 2: Zero servo input is always valid (keep running at zero speed) 3: Lower slowly when the zero speed maintenance time is reached Tens place: Brake failure protection reset method 0: Only for downward running 1: Both for upward and downward running 2: Only for reset commands Note: At certain faults that cannot be reset, such as VFD internal hardware damaged, zero servo cannot be entered. At the faults that can be reset, with zero servo conditions met, zero servo can be entered. Every time zero servo is exited, torque verification is not performed only at the first running command giving, which means the verification is performed at all the following running command giving. When P93.02 ones place=2, the motor becomes hot, the fan cannot be mounted at the same shaft as the motor, and it must be independently controlled.	0x00	©
P93.03	Slow lowering frequency at zero servo	The zero servo function needs to be used in closed-loop vector control. During stop, the VFD checks whether the pulse value is greater	4.00Hz	0

Function code	Name	Description	Default	Modify
P93.04	Slow lowering hold time at zero servo	than P93.05. If yes, the VFD reports the holding brake failure alarm A-bS, and the alarm can be	2.0s	0
P93.05	Zero servo tolerance pulse threshold	configured with relay action output. After reporting A-bS, it selects an action according to the ones place of P93.02 after the delay time specified by P93.06 (if the pulse value during this period is greater than 3 times the value specified by P93.05, this delay time P93.06 is skipped: 1. If P93.02 ones place=1, the motor runs down slowly at the frequency specified by P93.03, after the time specified by P93.04 elapses, the motor coasts to stop and performs detection again. This process will be repeated. 2. If P93.02 ones place=2, the running is kept at zero speed. 3. If P93.02 ones place=3, the motor keeps zero speed running for a period specified by P93.07, and later it automatically switches to the zero speed slow lowering down mode. P93.03 setting range:P90.17 (Reverse brake release frequency)=8.00Hz Setting range of P93.04: 0.0–30.0s Setting range of P93.05: 0–60000	20000	0
P93.06	Zero servo action taking delay	0–20.000s	0.500s	0
P93.07	Zero-servo zero-speed hold time	0–60min	10min	0
P93.08	Enabling height measuring	0-2 0: Disable 1: Enable internal measuring (motor encoder) 2: Enable external measuring (HDI) Note: When P93.08=2, P20.15=0 indicates HDI measuring the height.	0	0
P93.09	Mechanical transmission ratio	For internal measurement (motor encoder), the encoder is mounted on the motor shaft, and P93.09 is the reduction ratio between the motor shaft and drum shaft. For external measurement (HDI), P93.09 is the	10.00	0

Function code	Name	Description	Default	Modify
		reduction ratio between the encoder mounting shaft and pulley shaft. If the encoder is mounted on the pulley, set P93.09=1. For example, for gear speed reduction, Mechanical transmission ratio = (Number of teeth in gear 2)/(Number of teeth in gear 1)		
P93.10	Suspension ratio	Setting range: 0.01–300.00 Specifies the suspension ratio (See the following figure.) Setting range: 1–4 1: 1: 1 2: 1:2 3: Reserved 4: 1:4 Note: The suspension ratio is related to the pulley through which the steel rope goes.	1	©
P93.11	Rope length compensation	Rope length to compensate the distance from the center of gravity of the weight to the hook. 0.00–50.00m	0.00m	0
P93.12	Cable diameter	To measure heights correctly in closed-loop	10.0mm	0
P93.13	Per-layer turns of drum winding	mode, the actual running distance of the motor is calculated by using the encoder pulse count.	30	0

Function code	Name	Description	Default	Modify
P93.14		Before first running, the upward limit position	0	0
P93.15	winding Initial diameter of drum/pulley diameter	must be calibrated. The procedure for first running is as follows: Step 1 Set the upward limit position terminal, for example, P05.05=64. Then the HDI terminal functions as the upward limit position input. Step 2 If internal measurement (motor encoder) is enabled, set P93.08=1. Step 3 Start the tower crane to run upward and stop at the upward limit position. Step 4 Record the values ofP93.14 (Initial turns of drum winding) and P93.15 (Initial diameter of drum/pulley diameter). 2. In open/closed loop mode, if external measurement (HDI) is enabled, set P93.08=2. Start the tower crane to run upward and stop at the upward limit position. Setting range of P93.12: 0.1–100.0mm Setting range of P93.13: 1–200 Setting range of P93.14: 0–P93.13 (Per-layer turns of drum winding) Setting range of P93.15: 100.0–2000.0mm (Max. drum diameter in upward limit, including cable thickness) Setting range of P94.05: 0.00–655.35m (hook lowering distance) Setting range of P94.06 and P94.07: 0–65535	600.0mm	©
P93.16	Enabling upward/downward limit position check	0x00–0x11 Ones place: 0: The upward limit position is not reached. 1: The upward limit position is reached. Tens place: 0: The downward limit position is not reached. 1: The downward limit position is reached. For example, when the upward/downward limit position needs to be set manually, you can enable the check of whether the upward/downward limit position is reached. When the hook reaches a certain distance from	0x00	0

Function code	Name	Description	Default	Modify
		the top, the upward limit position is reached, P94.05=0 (droop height); when the hook reaches a certain distance from the ground, P93.18=0 (distance from downward limit position); P93.17 displays the distance between the upward and downward limit positions. During normal running between the upward and downward limit positions, P93.18 displays the downward limit position distance, while P94.05 displays the upward limit position distance; if the mechanism runs below the downward limit position, P93.18 displays a negative value.		
P93.17	Total height measured	0.00–655.35m (Total height measured from the upward limit position to the downward limit position)	0.00m	•
P93.18	Measured height 1	-50.00–655.35m The downward limit position is used as the reference point. During downward limit, P93.18=0.00m	0.00m	•
P93.19	Load torque autotuning	Invalid Autotuning for upward Autotuning for downward	0	0
P93.20	Loose rope detection and anchor hanging protection	0x000-0x111 Ones place: Downward loose rope detection selection 0: Disable 1: Enable Tens place: Stable lifting selection 0: Disable 1: Enable Hundreds place: Selection of instant stop at load change 0: Disable 1: Enable	0x000	0
P93.21	Downward loose rope detection method	0–2 0: Set through torque 1: Set through torque autotuning 2: Set through external signal detection (AI1)	0	0
P93.22	Upward autotuning	The autotuning procedure is as follows:	0.0	0

Function code	Name	Description	Default	Modify
	load torque	Step 1 Put the hook on the ground and loosen		
P93.23	Downward autotuning load torque	the rope. Step 2 Set P93.19=1 (or P93.19 for downward running). Step 3 Push the operating lever to gear 2 (higher than 10Hz) which is held at least 1s in the loose rope state after the frequency is stable (to autotune stable frequency torque). Step 4 Stop the machine and check the autotuning result. If P93.32 (or P93.33 for downward running) is not 0, autotuning is successful. Otherwise, you have to perform autotuning again. Setting range of P93.22 and P93.23: 0.0–50.0%(of the rated torque from the autotuning result)	0.0	0
	Downward loose	0.0–10.0V		
P93.24	rope external signal setting	During downward running, when Al1 signal is less than P93.24, the rope is loose.	0.0V	0
P93.25	Torque setting for downward loose rope protection	0.0–50.0% During downward running, when load torque is detected less than (P93.25±P93.29), the rope is loose.	5.0%	0
P93.26	Downward loose rope protection starting frequency	10.00Hz-P02.02	15.00Hz	0
P93.27	Downward loose rope detection delay	0.0–5.0s	0.8s	0
P93.28	Downward loose rope detection time window	0.000–20.000s	0.300s	0
P93.29	Downward loose rope detection allowed error	0.0–5.0%	0.5%	0
P93.30	Downward loose rope detection ratio threshold	0.0–100.0%	70.0%	0
P93.31- P93.32	Reserved	0–65535	0	•

Function code	Name	Description	Default	Modify
P93.33	Smooth lifting window time	0.0–20.0s	2.0s	0
P93.34	Smooth lifting protection frequency	When P93.20=1, indicating stable lifting protection is enabled to attenuate the shock caused by violent jitter up and down when the	10.00Hz	0
P93.35	Smooth lifting torque change rate protection point 1 (at low speed)	load is lifted and by sudden changes in load during high-speed running. When the running frequency is greater than P93.34, if the detected torque change rate is	40.0%/s	0
P93.36	Smooth lifting torque change rate protection point 2 (at high speed)	greater than the smooth lifting torque change rate protection point (specified by P93.35 or P93.36; the boundary frequency between low speed and high speed is P93.38), the smooth	40.0%/s	0
P93.37	Smooth lifting torque change rate protection point 3 (exiting smooth lifting)	lifting function is enabled, and the smooth lifting function set frequency (P93.34) is used. At this time, if the detected torque change rate is less than the smooth lifting torque change rate protection point 3 (specified by P93.37), acceleration to the set frequency is executed. 1. Timing of handling exceptions detected at gear-1 constant speed P93.34 Load change rate P93.37 Start Start 2. Timing of handling exceptions detected at gear-2 ACC	10.0%/s	0

Function	Name	Description	Default	Modify
code	Name	Description Cognet of page 1 F93.34 F93.37 Setting range of P93.34: 5.00–50.00Hz Setting range of P93.35: 0.0–150.0%/s Setting range of P93.37: 0.0–150.0%/s Setting range of P93.37: 0.0–150.0%/s	Default	Modify
		Note: The smooth lifting function is applicable only to the upward running.		
P93.38	Smooth lifting torque change rate judgment switching frequency	0.00–50.00Hz	10.00Hz	0
P93.39	ACC/DEC delay detection time in smooth lifting	0.0–20.0s	0.8s	0
P93.40	Max. allowed threshold of torque change rate	0.0–50.0	2.0	0
P93.41	Top-hitting prevention	0-3 0: Invalid 1: Upward limit position calibration 2: Time divided shielding 3: Valid When P93.41=0, top-hitting prevention is invalid. When P93.41=1, if the present counting pulse count is equal to P93.42, it is automatically reset to 3. When P93.41=2, the top-hitting prevention	0	0

Function code	Name	Description	Default	Modify
		function is invalid within 1 minute; 1 minute later, the function takes effect, and it is automatically reset to 3.		
P93.42	Upward limit position calibrated pulses	0–65535 Unit: x100 During upward running, if the present counting pulses are detected less than P93.42 or P93.43, the A-PSP alarm is reported.	1000	0
P93.43	Upward limit position offset pulses	0–65535 Unit: x100	400	0
P93.44	Upward limit position DEC pulse threshold	0–65535 Unit: x100 During upward running, if the present counting pulses are detected less than P93.44, the system decelerates to P91.35 according to the time specified by P01.26.	3000	0

Group P94--Hoisting status display

Function code	Name	Description		Default	Modify
P94.00	Alarm display value	0-21 0: None 1: Input phase loss alarm (A- SPI) 2: Upward position limit alarm (A-LU) 3: Downward position limit alarm (A-LU) 4: Low voltage protection alarm (A-LvP) 5: Overload protection alarm (A-OL) 6: Brake failure alarm (A-bS) 7: Brake feedback alarm (A-FA) 8: Loose rope protection alarm (A-SL) 9: PT100 detected overtemperature (A-Ot1) 10: PT1000 detected overtemperature (A-Ot2) 11: PT100 disconnection alarm (A-Pt1) 12: PT1000 disconnection alarm (A-Pt2) 13: PTC detected overtemperature (A-Ptc)	alarm		•

Function code	Name	Description	Default	Modify
Code		15: Weighing alarm (A-OvL) 16: Alarm of slave brake feedback in master/slave control (A-SLO) 17: Alarm of automatic brake detection at power-on (A-bEt) 18: Alarm indicating the set frequency is less than the brake closing frequency after brake release (A-rSF) 19: Brake detection light-wear alarm (A-LbE) 20: Brake detection heavy-wear alarm (A-obE) 21: Tower crane lifting top-hitting alarm (A-PSP)		
P94.01	Detected load torque value	0.0% –150.0% (of the motor rated torque)	0.0%	•
P94.02	Brake detection reminding time	0.0–1000.0h	0.0h	•
P94.03	Actual step of graded multi-step speed	0–6	0	•
P94.04	Zero-point position status	 0-2 0: There is input at zero-point position, but the VFD is still in running state. 1: The VFD has stopped, but there is input of zero-point signal, and zero position delay is reached (zero position is valid). 2: In condition of status 1, if a run command is given and the zero position has been left, the run command is effective. 	0	•
P94.05	Measured height	0.00–655.35m (hook lowering distance) (As the master in master/slave control, it sends this value.)	0.00	•
P94.06	High bits of height measuring pulse count value	0–65535	0	•
P94.07	Low bits of height measuring pulse count value	0–65535	0	•
P94.08	Upper limit of PT100 calibration temperature	-20.0–150.0°C	0.0°C	•

Function code	Name	Description	Default	Modify
P94.09	EC PT100 detected temperature calibration lower limit	-20.0–150.0°C	0.0°C	•
P94.10	Digital of PT100 calibrated temperature upper limit	0–4096	0	•
P94.11	Digital of PT100 calibrated temperature lower limit	0–4096	0	•
P94.12	Upper limit of PT1000 calibration temperature	-20.0–150.0°C	0.0°C	•
P94.13	EC PT1000 detected temperature calibration lower limit	-20.0–150.0°C	0.0°C	•
P94.14	Digital of PT1000 calibrated temperature upper limit	0–4096	0	•
P94.15	Digital of PT1000 calibrated temperature lower limit	0–4096	0	•
P94.16	PT100 present temperature	-50.0–150.0°C	0.0°C	•
P94.17	PT100 present digital	0–4096	0	•
P94.18	PT1000 present temperature	-50.0–150.0°C	0.0°C	•
P94.19	PT1000 present digital	0–4096	0	•
P94.20	Al detected motor temperature	-20.0–200.0°C	0.0°C	•
P94.21	Brake slip speed	0.00Hz-10.00Hz	0.00Hz	•

Function	Name	Description	Default	Modify
code	Name	Description	Delault	Woully
P94.22	Brake slip pulses	0–65535	0	•
P94.23	Light-load speed boost status	 0-3 0: Normal 1: Forward speed boost with light load 2: Reverse speed boost with light load 3: Constant power speed boost 	0	•
P94.24	Status of frequency decrease with voltage	0–1 0: Normal 1: In state of frequency decrease with voltage	0	•
P94.25	Average torque of loose rope	0.0% –150.0% (of the motor rated torque)	0.0%	•
P94.26	Load torque change rate in smooth lifting	0.0–100.0%/s	0.0%	•
P94.27	Status of smooth lifting	0–1 0: Normal 1: In smooth lifting	0	•
P94.28	Current imbalance multiple	0.0–6553.5	0.0	•
P94.31	Anti-sway status	0-2 0: No anti-sway 1: In anti-sway state 2: In sway reducing state	0	•
P94.32	Obtained rope length	0-600.00m (As the slave in master/slave control, it receives the height value.)	0.00m	•
P94.33	Rope length with compensation	0–600.0m	0.00m	•
P94.34	Pendulum length cycle	0–60000ms	0ms	•
P94.35	Real-time ACC/DEC time	0-60000ms	0ms	•
P94.36	Present ACC speed	-300.00–300.00Hz/ms	0.00 Hz/ms	•
P94.37	Mechanism real-time load	0.0–20.00t	0.00t	•
P94.38	Max. slip per-unit display	0–65535	0	•
P94.39	Present application macro	0–23	0	•

Function code	Name	Description	Default	Modify
P94.40	Present counting pulse low value of top-hitting prevention	0–65535	0	•
P94.41	Present counting pulse high value of top-hitting prevention	0–65535	0	•
P94.42	Top-hitting prevention validity	0–1 0: Invalid 1: Valid	0	•
P94.43	Motor group number before last power-off	0–2 0: Motor group 1 1: Motor group 2 2: Motor group 3	0	•
P94.44	Downward loose rope detection time rate	0.0–100.0%/s	0.0%/s	•

8 Troubleshooting

8.1 What this chapter contains

The chapter tells you how to reset faults and check faults history. A complete list of alarms and fault information as well as possible causes and corrective measures are presented in this chapter.

Only trained and qualified professionals are allowed to carry out the operations mentioned in this chapter. Please carry out operations according to instructions presented in chapter 1 Safety precautions".

8.2 Indications of alarms and faults

Faults are indicated by indicators. When the TRIP indicator is on, the alarm or fault code displayed on the keypad indicates the VFD is in abnormal state. This chapter covers most of the alarms and faults, and their possible causes and corrective measures. If you cannot find out the causes of alarms or faults, contact local INVT office.

8.3 Fault reset

The VFD can be reset by pressing the keypad key STOP/RST, digital inputs, or by cutting off the VFD power. After faults are removed, the motor can be started again.

8.4 Fault history

The function codes from P07.27 to P07.32 record the types of the last six faults. The function codes P07.33–P07.40, P07.41–P07.48, and P07.49–P07.56 record the running data of the VFD at the last three faults.

8.5 Faults and solutions

When a fault occurred, handle the fault as follows:

- 1. Check whether there is any exception on the keypad. If yes, contact the local INVT office.
- If no, check function code group P07 for the corresponding fault record parameters to determine the real state when the fault occurred.
- 3. See the following table for a detailed solution and check for exceptions.
- Rectify the fault or ask for help.
- 5. Ensure the fault has been rectified, perform fault reset, and run it again.

8.5.1 Faults and solutions

Note: The numbers enclosed in square brackets such as [1], [2] and [3] in the Fault type column in the following table indicate the VFD fault type codes read through communication.

Fault code	Fault type	Possible cause	Solution
OUt1	[1] Inverter unit	ACC too fast.	Increase ACC time.
	U-phase protection	IGBT module damaged.	Replace the power unit.

Fault			
code	Fault type	Possible cause	Solution
OUt2	[2] Inverter unit	Misoperation caused by	Check drive wires.
0012	V-phase protection	interference.	Check whether there is strong
		Drive wires poorly	interference surrounding the
OUt3	[3] Inverter unit	connected.	peripheral device.
00.0	W-phase protection	To-ground short circuit	
	[4] Overcurrent during	occurred.	Increase ACC/DEC time.
OC1	ACC	ACC/DEC is too fast.	Check the input power.
	[5] Overcurrent during	Grid voltage too low.	Select a VFD with larger power.
OC2	DEC	VFD power too small.	Check whether the load is short
		Load transient or exception occurred.	circuited (to-ground short circuit
		To-ground short circuit or	or line-to-line short circuit) or the
	[6] Overcurrent during	output phase loss occurred.	rotation is not smooth.
OC3	constant speed	Strong external interference	Check the output wiring.
	running	sources existed.	Check whether there is strong interference.
	_	Overcurrent stalling	Check the related function code
		protection disabled.	settings.
0)//	[7] Overvoltage during	Everation assumed to inner	Check the input power.
OV1	ACC	Exception occurred to input voltage.	Check whether load DEC time is
OV2	[8] Overvoltage during		too short or the motor starts
OVZ	DEC	Lack of braking units.	during rotating;
	[9] Overvoltage during		Install dynamic brake
OV3	constant speed	disabled.	components. Check the related function code
	running	Deceleration time too short.	settings.
		Grid voltage too low.	Check the grid input power.
UV	[10] Bus undervoltage	Overvoltage stall protection	Check the related function code
		disabled.	settings.
		Grid voltage too low.	Check the grid voltage.
		Motor rated current set	Reset the rated current of the
OL1	[11] Motor overload	incorrectly.	motor.
		Motor stall or load jumps	Check the load and adjust
		violently. ACC too fast.	torque boost. Increase ACC time.
1		Motor restarted during	Avoid restart after stop.
OL2	[12] VFD overload	rotating.	Check the grid voltage.
	[.,	Grid voltage too low.	Select a VFD with larger power.
		Load too heavy.	Select a proper motor.

Fault	Fault type	Possible cause	Solution
code	Fault type	Possible cause	Solution
		Power is too small.	
SPI	[13] Phase loss on input side	Phase loss or violent fluctuation occurred on inputs R, S, and T.	Check the input power. Check the installation wiring.
SPO	[14] Phase loss on output side	Phase loss occurred to U, V, W output or the three phases of load were seriously asymmetrical.	Check the output wiring. Check the motor and cable.
OH1	[15] Rectifier module overheating	Air duct blocked or fan damaged.	Ventilate the air duct or replace
OH2	[16] Module overheating	Ambient temperature too high. Long-time overload running.	the fan. Lower the ambient temperature.
EF	[17] External fault	SI external fault input terminal acts.	Check external device input.
CE	[18] RS485 communication fault	Incorrect baud rate. Communication line fault. Incorrect communication address. Communication suffers from strong interference.	Set a proper baud rate. Check the communication port wiring. Set the communication address correctly. Replace or change the wiring to enhance the anti-interference capacity.
ltE	[19] Current detection fault	Poor contact of the connector of control board. Hall component damaged. Exception occurred to amplification circuit.	Check the connector and re-plug. Replace the hall component. Replace the main control board.
tE	[20] Motor autotuning fault	Motor capacity does not match with the VFD capacity. This fault may occur if the capacity difference exceeds five power classes. Motor parameter is set improperly. The parameters gained from autotuning deviate sharply from the standard parameters.	Change the VFD model, or adopt the V/F mode for control. Set the motor type and nameplate parameters correctly. Empty the motor load and re-perform autotuning. Check motor wiring and parameter settings. Check whether the upper limit frequency is larger than 2/3 of the rated frequency.

Fault code	Fault type	Possible cause	Solution
		Autotuning timeout.	
EEP	[21] EEPROM operation fault	Control parameter reading/writing error. EEPROM damaged.	Press STOP/RST to reset. Replace the main control board.
PIDE	[22] PID feedback offline fault	PID feedback offline. PID feedback source disappears.	Check PID feedback signal wires. Check PID feedback source.
bCE	[23] Braking unit/resistor fault	Fault occurred to the braking circuit or the braking pipe is damaged. Small resistance of the external braking resistor. Braking resistor short circuited or PB-to-PE short circuited.	Check the braking unit, and replace with a new braking pipe. Increase the braking resistance. Check the braking resistor wiring.
END	[24] Running time reached	Actual VFD running time longer than internally set running time.	Ask the supplier to adjust the preset running time.
OL3	[25] Electronic overload fault	The VFD reports overload pre-alarm according to the setting.	Check the load and overload pre-alarm threshold.
PCE	[26] Keypad communication fault	Keypad cable connected improperly or disconnected. Keypad cable too long, causing strong interference. Keypad or mainboard communication circuit error.	Check the keypad cable to determine whether a fault occurs. Check for and remove the external interference source. Replace the hardware and seek maintenance services.
UPE	[27] Parameter upload error	Keypad cable connected improperly or disconnected. Keypad cable too long, causing strong interference. Keypad or mainboard communication circuit error.	Check for and remove the external interference source. Replace the hardware and seek maintenance services. Replace the hardware and seek maintenance services.
DNE	[28] Parameter download error	Keypad cable connected improperly or disconnected. Keypad cable too long, causing strong interference. Keypad data storage error	Check for and remove the external interference source. Replace the hardware and seek maintenance services. Re-back up the data on the

Fault code	Fault type	Possible cause	Solution
			keypad.
E-DP	[29] PROFIBUS card communication timeout fault	No data transmission between the communication card and the host controller (or PLC).	Check whether the communication card wiring is loose or dropped.
E-NET	[30] Ethernet card communication timeout fault	There is no data transmission between the communication card and the host controller.	Check whether the communication card wiring is loose or dropped.
E-CAN	[31] CANopen card communication timeout fault	No data transmission between the communication card and the host controller (or PLC).	Check whether the communication card wiring is loose or dropped.
ETH1	[32] To-ground short-circuit fault 1	VFD output short connected to the ground. Current detection circuit is faulty. Actual motor power setup deviates sharply from the VFD power.	Check whether the motor wiring is normal. Replace the hall component. Replace the main control board. Reset the motor parameters properly.
ETH2	[33] To-ground short-circuit fault 2	VFD output short connected to the ground. Current detection circuit is faulty. Actual motor power setup deviates sharply from the VFD power.	Check whether the motor wiring is normal. Replace the hall component. Replace the main control board. Reset the motor parameters properly.
dEu	[34] Speed deviation fault	The load is too heavy or stalled.	Check the load to ensure it is proper, and increase the detection time. Check whether the control parameters are set properly.
STo	[35] Mal-adjustment fault	SM control parameters are set incorrectly. Autotuned parameters are not accurate. The VFD is not connected to the motor.	detection time.
LL	[36] Electronic	The VFD reports underload	Check the load and overload

Fault code	Fault type	Possible cause	Solution
	underload fault	pre-alarm according to the setting.	pre-alarm threshold.
ENC10	[37] Encoder disconnection fault	Encoder line sequence is incorrect, or signal wires are poorly connected.	Check the encoder wiring.
ENC1D	[38] Encoder reversal fault	The encoder speed signal is contrary to the motor running direction.	Reset encoder direction.
ENC1Z	[39] Encoder Z pulse disconnection fault	Z signal wires are disconnected.	Check the wiring of Z signal.
STO	[40] Safe torque off	Safe torque off function is enabled by external forces.	/
STL1	[41] Exception occurred to safe circuit of channel 1	The wiring of STO is improper. Fault occurred to external switch of STO. Hardware fault occurred to safety circuit of channel 1	Check whether terminal wiring of STO is proper and firm enough. Check whether the external switch of STO can work properly. Replace the control board.
STL2	[42] Exception occurred to safe circuit of channel 2	The wiring of STO is improper. Fault occurred to external switch of STO. Hardware fault occurred to safety circuit of channel 2	Check whether terminal wiring of STO is proper and firm enough. Check whether the external switch of STO can work properly. Replace the control board.
STL3	[43] Exception occurred to both channel 1 and channel 2	Hardware fault occurred to STO circuit.	Replace the control board.
CrCE	[44] Safety code FLASH CRC check fault	Control board is faulty.	Replace the control board.
E-Err	[55] Duplicate expansion card type	The two inserted expansion cards are of the same type	You should not insert two cards with the same type. Check the type of expansion card, and remove one card after power-off.

Fault code	Fault type	Possible cause	Solution
ENCUV	[56] Encoder UVW loss	No electric level variation occurred to UVW signal	Check the wiring of UVW; Encoder is damaged.
E-PN	[57] PROFINET card communication timeout fault	No data transmission between the communication card and the host controller (or PLC).	Check whether the communication card wiring is loose or dropped.
SECAN	[58] CAN master/slave card communication timeout fault	There is no data transmission between the CAN master and slave communication cards.	Check whether the communication card wiring is loose or dropped.
ОТ	[59] Motor overtemperature fault	Motor overtemperature input terminal is valid. The temperature detection resistance is abnormal. Long-time overload running or exception occurred.	Check the wiring of the motor overtemperature input terminal (terminal function 57). Check whether the temperature sensor is proper; Check the motor, and perform maintenance on the motor.
F1-Er	[60] Failed to identify the expansion card at card slot 1	There is data transmission in interfaces of card slot 1, however, it cannot read the card type.	Confirm whether the expansion card inserted can be supported. Stabilize the expansion card interfaces after power-off, and check whether the fault persists at next power-on. Check whether the insertion port is damaged. If yes, replace the insertion port after power-off.
F2-Er	[61] Failed to identify the expansion card at card slot 2	There is data transmission in interfaces of card slot 2, however, it cannot read the card type.	Confirm whether the expansion card inserted can be supported. Stabilize the expansion card interfaces after power-off, and check whether the fault persists at next power-on. Check whether the insertion port is damaged. If yes, replace the insertion port after power-off.
F3-Er	[62] Failed to identify the expansion card at card slot 3	There is data transmission in interfaces of card slot 3, however, it cannot read the card type.	Confirm whether the expansion card inserted can be supported. Stabilize the expansion card interfaces after power-off, and

Fault	Fault time	Descible seves	Calutian
code	Fault type	Possible cause	Solution
			check whether the fault persists
			at next power-on.
			Check whether the insertion port
			is damaged. If yes, replace the
			insertion port after power-off.
			Confirm whether the expansion
			card inserted can be supported.
			Stabilize the expansion card
	[63] Communication	There is no data	interfaces after power-off, and
C1-Er	timeout of expansion	transmission in interface at	check whether the fault persists
	card at card slot 1	card slot 1.	at next power-on.
			Check whether the insertion port
			is damaged. If yes, replace the
			insertion port after power-off.
			Confirm whether the expansion
			card inserted can be supported.
			Stabilize the expansion card
	[64] Communication	There is no data	interfaces after power-off, and
C2-Er	timeout of expansion	transmission in interface at	check whether the fault persists
	card at card slot 2	card slot 2.	at next power-on.
			Check whether the insertion port
			is damaged. If yes, replace the
			insertion port after power-off.
			Confirm whether the expansion
			card inserted can be supported.
	ro=1.0		Stabilize the expansion card
	[65] Communication	There is no data	interfaces after power-off, and
C3-Er	timeout of expansion	transmission in interface at	check whether the fault persists
	card at card slot 3	card slot 3.	at next power-on.
			Check whether the insertion port
			is damaged. If yes, replace the
		No data transmission	insertion port after power-off.
	[66] EtherCAT card	No data transmission between the communication	Check whether the
E-CAT	communication	card and the host controller	communication card wiring is
	timeout fault	(or PLC).	loose or dropped.
	[67] BACnet card	No data transmission	Check whether the
E-BAC	communication	between the communication	communication card wiring is
L-DAG	timeout fault	card and the host controller	loose or dropped.
	umeout iauit	cara and the nost controller	loose of dropped.

Fault code	Fault type	Possible cause	Solution
3343		(or PLC).	
E-DEV	[68] DeviceNet card communication timeout fault	No data transmission between the communication card and the host controller (or PLC).	Check whether the communication card wiring is loose or dropped.
S-Err	[69] CAN slave fault in master/slave synchronization	Fault occurred to one of the CAN slave VFDs.	Detect the CAN slave VFD and analyze the corresponding fault cause.
dIS	[70] VFD disabled	The input terminal selects VFD enabling, but the terminal signal is invalid.	Check the input terminal setting and terminal signal.
tbE	[71] Contactor feedback fault	The contactor feedback circuit is disconnected or in poor contact. The contactor feedback detection time is too short.	Check the contactor feedback circuit. Increase the detection time P91.05 to a proper value.
FAE	[72] Brake feedback fault	The brake feedback circuit is disconnected or in poor contact. The brake feedback detection time is too short.	Check the brake feedback circuit. Increase the detection time P90.32 to a proper value.
tPF	[73] Torque verification fault	The torque verification current, moment force setting, and torque verification fault detection time are set improperly.	Check whether the torque verification current and torque settings are too small and whether the detection time P90.30 is too short. Check whether the motor rated power is set correctly.
StC	[74] Operating lever zero-position fault	The operating lever does not return to the zero position. The operating lever zero-position signal is adhered.	Put the operating lever to the zero position. Check out the operating lever zero-position signal.
LSP	[75] Low-speed run protection fault	Running speed too low.	Check whether the running speed is continuously lower than P92.03.
tCE	[76] Terminal command exception	The terminal gives both the upward and downward commands at the same time.	Check the input terminal signal.

Fault code	Fault type	Possible cause	Solution
POE	[77] Power-on terminal command exception	The terminal command is detected at power-on.	Check whether P01.18 is set to enable the VFD reports a fault when a terminal command is valid at power-on. Check the input terminal signal.
SLE	[78] Loose rope protection fault	The hook rope is abnormal. The downward loose rope parameter setting is improper.	Check whether the hook rope is normal. Check whether the downward loose rope detection torque is proper.
bE	[79] Brake failure	The brake force is insufficient. The brake detection parameter setting is improper.	Check whether the brake is normal. Check whether the brake slip parameter setting is proper.
ELS	[80] Master/slave position synchronization fault	The encoder pulse difference between the master and slave is too large. The pulse threshold setting is improper.	Check whether the master and slave encoders are abnormal. Check whether the salve pulse threshold is set too small.
AdE	[81] Analog speed reference deviation fault	If the speed is given by analog, the analog voltage is greater than 1.0V after zero-position detection is complete.	Check the analog wiring and current voltage value.
OtE1	[82] PT100 overtemperature fault	Ambient temperature too high. PT100 circuit exception. PT100 overtemperature protection is set improperly.	Check the ambient temperature. Check the PT100 circuit. Check whether the PT100 overtemperature fault point is set too small.
OtE2	[83] PT1000 overtemperature fault	Ambient temperature too high. PT1000 circuit exception. PT1000 overtemperature protection is set improperly.	Check the ambient temperature. Check the PT1000 circuit. Check whether the PT1000 overtemperature fault point is set too small.
SFE	[84] Set frequency fault	The set frequency is too small.	Check whether the frequency reference is less than the set frequency fault protection frequency point.

Fault code	Fault type	Possible cause	Solution
Cuu	[85] Output current imbalance	3PH output current imbalance.	Check the load wiring with UVW. Check whether the value of P92.32 is too small.
PtcE	[86] PTC overtemperature fault	Ambient temperature too high.	Check the ambient temperature.
E-OvL	[87] Overload fault	Load too heavy.	Check whether load is too heavy. Check whether P92.46 (Mechanism overload protection point) is too small.
E-OS	[88] Overspeed fault	Motor overspeed.	Check whether P92.34 is too small.
E-dS	[89] Stalling fault	Motor suffers stalling.	Check whether the brake can be opened properly. Check whether P92.36 is too small.
E-Al1	[92] Al1 disconnection	Al1 is disconnected.	Check Al1 wiring.
E-AI2	[93] Al2 disconnection	Al2 is disconnected.	Check AI2 wiring.
E-AI3	[94] Al3 disconnection	Al3 is disconnected.	Check AI3 wiring.
E-EIP	[95] EtherNet IP communication timeout	No data transmission between the communication card and the host controller (or PLC).	Check whether the communication card wiring is loose or dropped.
E-PAO	[96] No upgrade bootloader	The burned file does not contain a bootloader.	Burn the file with a bootloader again. You can screen out this fault by setting P14.12. (The absence of a bootloader does not affect the normal running of machine.)
ENC2O	[97] Second channel encoder disconnection	Second channel encoder disconnection	Check the second channel encoder wiring.
ENCPI	[98] SSI position deviation fault	A position sensor position feedback exception occurred during positioning.	Check whether the data feedback from the position sensor to P17.60 and P17.61 is normal.
E-PUP	[99] SSI position forward limit position	The position feedback from the position sensor has exceeded the maximum software limit position.	Check whether the feedback from the position sensor is proper. Check whether the maximum

Fault code	Fault type	Possible cause	Solution
			software limit position settings P11.63 and P11.64 are proper.
E-Pdn	· ·	The position feedback from the position sensor has exceeded the maximum software limit position.	Check whether the feedback from the position sensor is proper. Check whether the maximum software limit position settings P11.61 and P11.62 are proper.
E-CL	[101] Fault of instant stop at load change	When P93.20 hundreds place=1, the lifting mechanism detects a sudden load change after the load is lifted off the ground.	Check whether there are any exceptions in the upward operation of the lifting mechanism.

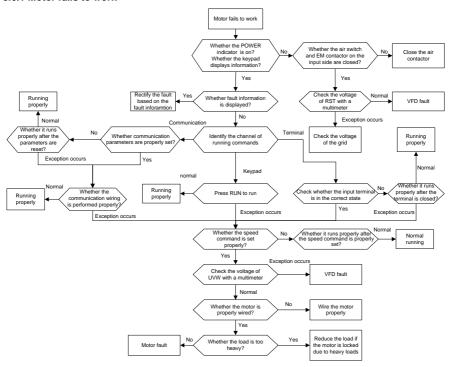
8.5.2 Alarms and solutions

Note: The numbers enclosed in square brackets such as [1], [2] and [3] in the Alarm code column in the following table indicate the VFD alarm type codes read through communication.

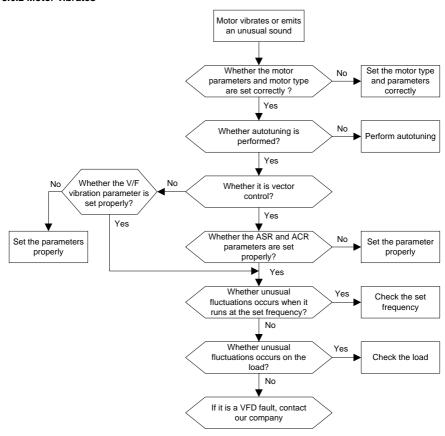
Alarm code	Alarm type	Possible cause	Solution
A-SPI	[1] Input phase loss alarm	During stop, a loss of either input phase R, S, or T occurs or fluctuation is great.	Check the input power and wiring.
A-LU	[2] Upward limit position alarm	The input terminal has set the upward limited position reaching function, and there is a signal reference to the terminal.	Check whether the allowed highest position point has been reached. Check the input terminal signal.
A-Ld	[3] Downward position limit alarm	The input terminal has set the downward limited position reaching function, and there is a signal reference to the terminal.	Check whether the allowed lowest position point has been reached. Check the input terminal signal.
A-LvP	[4] Low voltage alarm	The bus voltage is too low.	Check whether the voltage protection point is too high. Check whether the grid voltage or rectifier module is abnormal.
A-OL	[5] Overload protection alarm	Load is too large. Overload protection	Check whether the load is too large.

Alarm code	Alarm type	Possible cause	Solution
		parameters are set improperly.	Check whether the overload
A-bS	[6] Brake failure alarm	The brake force is insufficient. Abnormal encoder. Zero servo detection parameters are set improperly.	protection point is set too low. Check whether the brake is normal. Check whether the encoder works normally. Check whether zero servo tolerance pulse threshold is set too small.
A-FA	[7] Brake feedback alarm	The brake feedback circuit is disconnected or in poor contact. The brake feedback detection time is too short.	Check the brake feedback circuit. Increase the detection time P90.32 to a proper value.
A-SL	[8] Loose rope protection alarm	The hook rope is abnormal. The downward loose rope parameter setting is improper.	Check whether the hook rope is normal. Check whether the downward loose rope detection torque is proper.
A-Ot1	[9] PT100 detected overtemperature alarm	The ambient temperature is too high. PT100 detected overtemperature alarm point is set improperly.	Check the ambient temperature. Check whether the PT100 detected overtemperature protection point is set too small.
A-Ot2	[10] PT1000 detected overtemperature alarm	The ambient temperature is too high. PT1000 detected overtemperature alarm point is set improperly.	Check the ambient temperature. Check whether the PT1000 detected overtemperature protection point is set too small.
A-Pt1	[11] PT100 disconnection alarm	PT100 wiring circuit is opened.	Check PT100 wiring circuit.
A-Pt2	[12] PT1000 disconnection alarm	PT1000 wiring circuit is opened.	Check PT1000 wiring circuit.
A-Ptc	[13] PTC detected overtemperature alarm	The ambient temperature is too high.	Check the ambient temperature.
A-AOt	[14] AI detected	The ambient temperature is	Check the temperature sensor

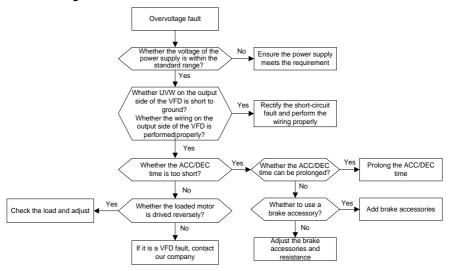
Alarm code	Alarm type	Possible cause	Solution
	overtemperature alarm	too high.	wiring circuit. Check whether P92.24 is too
	alam	Temperature sensor detection circuit exception. Improper OH protection setting.	small.
A-OvL	[15] Weighing alarm	Motor overloaded.	Check whether P92.04 is to small.
A-SLO	[16] Alarm of slave brake feedback in master/slave control	The brake release of the slave is not synchronous with that of the master.	Check parameter settings.
A-bEt	[17] Reminding in power-on auto brake detection	Automatic brake detection is performed after power-on.	Check the tens place setting of P92.00.
A-rSF	the set frequency is less than the brake closing frequency	The set frequency is lower than the brake closing frequency after the brake is released in the situation where brake control is enabled.	Check the setting of P92.30 to check whether the set frequency is lower than the brake closing frequency.

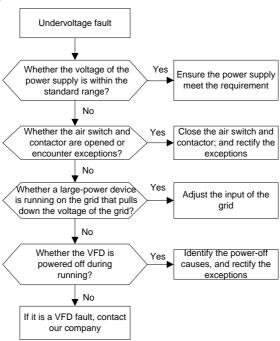

Note: After fault recovery, the corresponding alarm is automatically cleared.

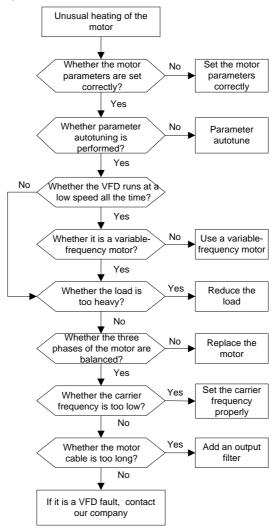
8.5.3 Other status

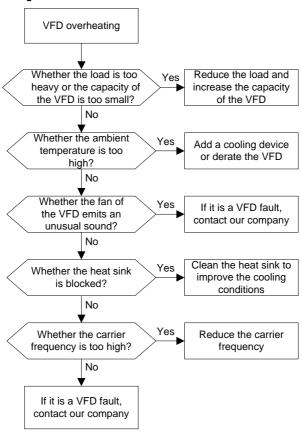

Displayed code	Status type	Possible cause	Solution
PoFF	System power failure	The system is powered off or the bus voltage is too low.	Check the grid conditions.

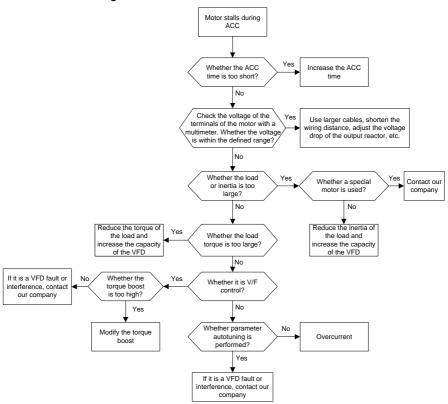
8.6 Analysis on common faults

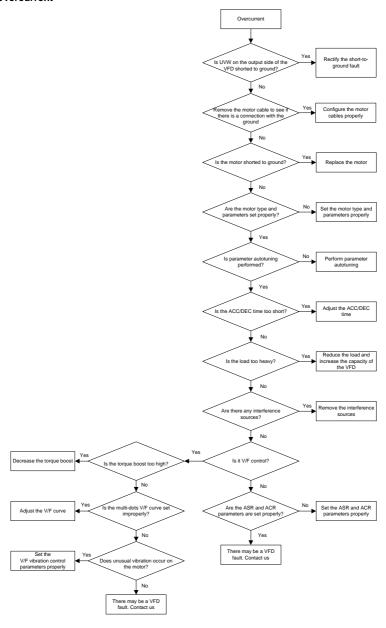

8.6.1 Motor fails to work


8.6.2 Motor vibrates


8.6.3 Overvoltage


8.6.4 Undervoltage


8.6.5 Motor overheating


8.6.6 VFD overheating

8.6.7 Motor stalls during ACC

8.6.8 Overcurrent

8.7 Countermeasures on common interference

8.7.1 Interference on meter switches and sensors

Interference phenomenon

Pressure, temperature, displacement, and other signals of a sensor are collected and displayed by a human-machine interaction device. The values are incorrectly displayed as follows after the VFD is started:

- 1. The upper or lower limit is wrongly displayed, for example, 999 or -999.
- 2. The display of values jumps (usually occurring on pressure transmitters).
- The display of values is stable, but there is a large deviation, for example, the temperature is dozens of degrees higher than the common temperature (usually occurring on thermocouples).
- 4. A signal collected by a sensor is not displayed but functions as a drive system running feedback signal. For example, the VFD is expected to decelerate when the upper pressure limit of the compressor is reached, but in actual running, it starts to decelerate before the upper pressure limit is reached.
- After the VFD is started, the display of all kinds of meters (such as frequency meter and current meter) that are connected to the analog output (AO) terminal of the VFD is severely affected, displaying the values incorrectly.
- Proximity switches are used in the system. After the VFD is started, the indicator of a proximity switch flickers, and the output level flips.

Solution

- Check and ensure that the feedback cable of the sensor is 20 cm or farther away from the motor cable
- 2. Check and ensure that the ground wire of the motor is connected to the PE terminal of the VFD (if the ground wire of the motor has been connected to the ground block, you need to use a multimeter to measure and ensure that the resistance between the ground block and PE terminal is lower than 1.5Ω).
- Try to add a safety capacitor of 0.1µF to the signal end of the feedback signal terminal of the sensor.
- Try to add a safety capacitor of 0.1μF to the power end of the sensor meter (pay attention to the voltage of the power supply and the voltage endurance of the capacitor).
- 5. For interference on meters connected to the AO terminal of the VFD, If AO uses 0–20mA current signal, add a capacitor of 0.47µF between the AO and GND terminals; if AO uses 0–10V voltage signal, add a capacitor of 0.1µF between the AO and GND terminals.

Note:

When a decoupling capacitor is required, add it to the terminal of the device connected to the

sensor. For example, if a thermocouple is to transmit signals of 0 to 20 mA to a temperature meter, the capacitor needs to be added on the terminal of the temperature meter; if an electronic ruler is to transmit signals of 0 to 30 V to a PLC signal terminal, the capacitor needs to be added on the terminal of the PLC.

If a large number of meters or sensors are disturbed, it is recommended that you configure an
external C2 filter on the VFD input power end. For details, see D.8 Filter.

8.7.2 Interference on RS485 communication

The interference described in this section on RS485 communication mainly includes communication delay, out of synchronization, occasional power-off, or complete power-off that occurs after the VFD is started.

If the communication cannot be implemented properly, regardless of whether the VFD is running, the exception is not necessarily caused by interference. You can find out the causes as follows:

- 1. Check whether the RS485 communication bus is disconnected or in poor contact.
- 2. Check whether the A and B wires of the RS485 communication bus are connected reversely.
- Check whether the communication protocol of the VFD is consistent with that of the upper computer. Check whether the communication protocol (such as the baud rate, data bits, and check bit) of the VFD is consistent with that of the host computer.

If you are sure that communication exceptions are caused by interference, you can resolve the problem through the following measures:

- 1. Simple inspection.
- 2. Arrange the communication cables and motor cables in different cable trays.
- In multi-VFD application scenarios, adopt the chrysanthemum connection mode to connect the communication cables between VFDs, which can improve the anti-interference capability.
- In multi-VFD application scenarios, check and ensure that the driving capacity of the master is sufficient
- 5. In the connection of multiple VFDs, you need to configure one 120 Ω terminal resistor at both ends.

Solution

- Check and ensure that the ground wire of the motor is connected to the PE terminal of the VFD (if
 the ground wire of the motor has been connected to the ground block, you need to use a
 multimeter to measure and ensure that the resistance between the ground block and PE terminal
 is lower than 1.5 Ω).
- Do not connect the VFD and motor to the same ground terminal as the host controller (such as the PLC, HMI, and touch screen). It is recommended that you connect the VFD and motor to the power ground, and connect the upper computer separately to a ground stud.

- Try to short the signal reference ground terminal (GND) of the VFD with that of the upper computer controller to ensure that ground potential of the communication chip on the control board of the VFD is consistent with that of the communication chip of the upper computer.
- 4. Try to short GND of the VFD to its ground terminal (PE).
- 5. Try to add a safety capacitor of 0.1 μF on the power terminal of the upper computer (PLC, HMI, and touch screen). During this process, pay attention to the voltage of the power supply and the voltage endurance capability of the capacitor. Alternatively, you can use a magnet ring (Fe-based nanocrystalline magnet rings are recommended). Put the power L/N line or +/- line of the upper computer through the magnet ring in the same direction and wind 8 coils around the magnet ring.

8.7.3 Failure to stop and indicator shimmering due to motor cable coupling

Interference phenomenon

1. Failure to stop

In a VFD system where an S terminal is used to control the start and stop, the motor cable and control cable are arranged in the same cable tray. After the system is started properly, the S terminal cannot be used to stop the inverter.

2. Indicator shimmering

After the VFD is started, the relay indicator, power distribution box indicator, PLC indicator, and indication buzzer shimmer, blink, or emit unusual sounds unexpectedly.

Solution

- Check and ensure that the exception signal cable is arranged 20 cm or farther away from the motor cable.
- 2. Add a safety capacitor of 0.1µF between the digital input terminal (S) and the COM.
- Connect the digital input terminal (S) that controls the start and stop to other idle digital input terminals in parallel. For example, if S1 is used to control the start and stop and S4 is idle, you can try to short connect S1 to S4 in parallel.

Note: If the controller (such as PLC) in the system controls more than 5 VFDs at the same time through digital input terminals (S), this scheme is not applicable.

8.7.4 Leakage current and interference on RCD

VFDs output high-frequency PWM voltage to drive motors. In this process, the distributed capacitance between the internal IGBT of a VFD and the heat sink and that between the stator and rotor of a motor may inevitably cause the VFD to generate high-frequency leakage current to the ground. A residual current operated protective device (RCD) is used to detect the power-frequency leakage current when a grounding fault occurs on a circuit. The application of a VFD may cause misoperation of a RCD.

1. Rules for selecting RCDs

- (1) VFD systems are special. In these systems, it is required that the rated residual current of common RCDs at all levels is larger than 200 mA, and the VFDs are grounded reliably.
- (2) For RCDs, the time limit of an action needs to be longer than that of a next action, and the time difference between two actions need to be longer than 20ms, for example, 1s, 0.5s, or 0.2s.
- (3) For circuits in VFD systems, electromagnetic RCDs are recommended. Electromagnetic RCDs have strong anti-interference capability, and thus can prevent the impact of high-frequency leakage current.

Electronic RCD	Electromagnetic RCD
	Requiring highly sensitive, accurate, and stable
Low cost, high sensitivity, small in volume,	zero-phase sequence current transformer, using
susceptible to voltage fluctuation of the grid and	permalloy high-permeability materials, complex
ambient temperature, and weak	process, high cost, not susceptible to voltage
anti-interference capability.	fluctuation of the power supply and ambient
	temperature, strong anti-interference capability.

- 2. Solution to RCD misoperation (handling the VFD)
- (1) Try to remove the jumper cap at "EMC/J10" from the middle casing of the VFD.
- (2) Try to decrease the carrier frequency to 1.5kHz (P00.14=1.5).
- (3) Try to modify the modulation method to "3PH modulation and 2PH modulation" (P08.40=00).
- 3. Solution to RCD misoperation (handling the system power distribution)
- (1) Check and ensure that the power cable is not soaking in water.
- (2) Check and ensure that cables are not damaged or spliced.
- (3) Check and ensure that no secondary grounding is performed on the neutral wire.
- (4) Check and ensure that the main power cable terminal is in good contact with the air switch or contactor (all screws are tightened).
- (5) Check 1PH powered devices, and ensure that no earth wires are used as neutral wires by these devices.
- (6) Do not use shielded cables as VFD power cables and motor cables.

8.7.5 Live device housing

After the VFD is started, there is sensible voltage on the chassis, and you may feel an electric shock when touching the chassis. The chassis, however, is not live (or the voltage is far lower than the human safety voltage) when the VFD is powered on but not running.

Solution

 If there is power distribution ground or ground stud on the site, ground the cabinet chassis of the VFD through the power ground or stud. If there is no grounding on the site, you need to connect the motor chassis to the ground terminal PE of the VFD, and ensure that the jumper at "EMC/J10" on the middle casing of the VFD is shorted.

9 Maintenance

9.1 What this chapter contains

This chapter describes how to carry out preventive maintenance on the VFD.

9.2 Periodical inspection

Little maintenance is required when the VFD is installed in an environment that meets requirements. The following table describes the routine maintenance periods recommended by INVT. The following table describes the routine maintenance periods recommended by INVT.

Ch	eck scope	Item	Method	Criterion
Ambient environment		Check the temperature, and humidity, and whether there is vibration, dust, gas, oil spray, and water droplets in the environment.		The requirements stated in this manual are met.
		Check whether there are foreign matters, such as tools, or dangerous substances placed nearby.	Visual inspection	There are no tools or dangerous substances placed nearby.
	Voltage	Check the voltage of the main circuit and control circuit.	Use multimeters or other instruments for measurement.	The requirements stated in this manual are met.
Keypad		Check the display of information.	Visual inspection	The characters are displayed properly.
		Check whether characters are not completely displayed.	Visual inspection	The requirements stated in this manual are met.
		Check whether the bolts loose or come off.	Screw them up.	No exception occurs.
Main circuit		Check whether the machine is deformed, cracked, or damaged, or their color changes due to overheating and aging.	Visual inspection	No exception occurs.
	Common	Check whether dirt or dust is attached.	Visual inspection	No exception occurs. Note: Discoloration of copper bars does not mean that they cannot

Ch	eck scope	Item	Method	Criterion
	•			work properly.
	Conductor and	Check whether conductors are deformed or color change for overheat.	Visual inspection	No exception occurs.
	wire	Check whether the wire sheaths are cracked or their color changes.	Visual inspection	No exception occurs.
	Terminal block	Check whether there is damage.	Visual inspection	No exception occurs.
		Check whether there is electrolyte leakage, discoloration, cracks, and chassis expansion.	Visual inspection	No exception occurs.
	Filter capacitor	Check whether the safety valves are released.	Determine the service life based on the maintenance information, or measure them through electrostatic capacity.	No exception occurs.
		Check whether the electrostatic capacity is measured as required.	measure the	Electrostatic capacity ≥ initial
		Check whether there is displacement caused due to overheat.	capacity. Olfactory and visual inspection	value x 0.85 No exception occurs.
	Resistor	Check whether the resistors are disconnected.	Visual inspection, or remove one end of the connection cable and use a multimeter for measurement.	Resistance range: ±10% (of the standard resistance)
	Transformer and reactor	Check whether there is unusual vibration sounds or smells.	Auditory, olfactory, and visual inspection	No exception occurs.
	Electromagnetic contactor and	Check whether there are vibration sounds in the workshop.	Auditory inspection	No exception occurs.
	Relay	Check whether the contacts are in good contact.	Visual inspection	No exception occurs.
Control circuit	Control PCB and connector	Check whether the screws and connectors loose.	Screw them up.	No exception occurs.

Ch	eck scope	Item	Method	Criterion	
		Check whether there is	Olfactory and visual	No exception	
		unusual smell or discoloration.		occurs.	
		Check whether there are cracks, damage, deformation, or rust.	Visual inspection	No exception occurs.	
		Check whether there is electrolyte leakage or deformation.	Visual inspection, and determine the service life based on the maintenance information.	No exception occurs.	
		Check whether there are unusual sounds or vibration.	Auditory and visual inspection, and turn the fan blades with your hand.	The rotation is	
	Cooling fan	Check whether the bolts loose.	Screw them up.	No exception occurs.	
Cooling system			Visual inspection, and determine the service life based on the maintenance information.	No exception occurs.	
	Ventilation duct	Check whether there are foreign matters blocking or attached to the cooling fan, air inlets, or air outlets. Check whether there are foreign objects attached.		No exception occurs.	

For more details about maintenance, contact the local INVT office, or visit our website www.invt.com, and choose Support > Services.

9.3 Cooling fan

The service life of the cooling fan of the VFD is more than 25,000 hours. The actual service life of the cooling fan is related to the use of the VFD and the temperature in the ambient environment.

You can view the running duration of the VFD through P07.14 (Accumulated running time).

The increase of the bearing noise indicates a fan fault. If the VFD is applied in a key position, replace the fan once the fan starts to generate unusual noise. You can purchase spares of fans from INVT.

Cooling fan replacement:

Read chapter 1 Safety precautions carefully and follow the instructions to perform operations. Ignoring these safety precautions may lead to physical injury or death, or device damage.

- Stop the VFD, disconnect the AC power supply, and wait for a time no shorter than the waiting time designated on the VFD.
- Open the cable clamp to loosen the fan cable (for the 380V 1.5–30 kW VFD models, the middle casing needs to be removed).
- 3. Disconnect the fan cable.
- Remove the fan with a screwdriver.
- 5. Install a new fan in the VFD in the reverse steps. Assemble the VFD. Ensure that the air direction of the fan is consistent with that of the VFD, as shown in Figure 9-1.

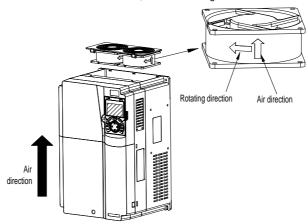


Figure 9-1 Fan maintenance for the 1.5kW and higher VFD models

6. Connect to the power.

9.4 Capacitor

9.4.1 Capacitor reforming

If the VFD has been left unused for a long time, you need to follow the instructions to reform the DC bus capacitor before using it. The storage time is calculated from the date the VFD is delivered.

Storage time	Operation principle			
Less than 1 year No charging operation is required.				
4 to 2 vector	The VFD needs to be powered on for 1 hour before the first running			
1 to 2 years	command.			
	Use a voltage controlled power supply to charge the VFD:			
	Charge the VFD at 25% of the rated voltage for 30 minutes			
2 to 3 years	and then charge it at 50% of the rated voltage for 30 minutes			
	at 75% for another 30 minutes			
	and finally charge it at 100% of the rated voltage for 30 minutes.			

More than 3 years	Use a voltage controlled power supply to charge the VFD: Charge the VFD at 25% of the rated voltage for 2 hours, and then charge it at 50% of the rated voltage for 2 hours, at 75% for another 2 hours,
	and finally charge it at 100% of the rated voltage for 2 hours.

The method for using a voltage controlled power supply to charge the VFD is described as follows:

The selection of an adjustable power supply depends on the power supply of the VFD. For VFDs with an incoming voltage of 1PH/3PH 220VAC, you can use a 220VAC/2A voltage regulator. Both 1PH and 3PH VFDs can be charged with a 1PH voltage controlled power supply (connect L+ to R, and N to S or T). All the DC bus capacitors share one rectifier, and therefore they are all charged.

For VFDs of a high voltage class, ensure that the voltage requirement (for example, 380 V) is met during charging. Capacitor changing requires little current, and therefore you can use a small-capacity power supply (2 A is sufficient).

The method for using a resistor (incandescent lamp) to charge the drive is described as follows:

If you directly connect the drive device to a power supply to charge the DC bus capacitor, it needs to be charged for a minimum of 60 minutes. The charging operation must be performed at a normal indoor temperature without load, and you must connect a resistor in series mode in the 3PH circuit of the power supply.

For a 380V drive device, use a resistor of 1 k Ω /100W. If the voltage of the power supply is no higher than 380 V, you can also use an incandescent lamp of 100W. If an incandescent lamp is used, it may go off or the light may become very weak.

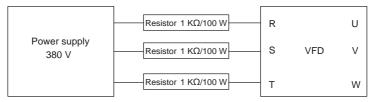


Figure 9-2 380V drive device charging circuit example

9.4.2 Electrolytic capacitor replacement

Read chapter 1 Safety precautions carefully and follow the instructions to perform operations. Ignoring these safety precautions may lead to physical injury or death, or device damage.

The electrolytic capacitor of a VFD must be replaced if it has been used for more than 35,000 hours. For details about the replacement, contact the local INVT office.

9.5 Power cable

Read chapter 1 Safety precautions carefully and follow the instructions to perform operations. Ignoring these safety precautions may lead to physical injury or death, or device damage.

- Stop the VFD, disconnect the power supply, and wait for a time no shorter than the waiting time designated on the VFD.
- 2. Check the connection of the power cables. Ensure that they are firmly connected.
- 3. Connect to the power.

10 Communication protocol

10.1 What this chapter contains

This chapter describes the communication of the VFD.

The VFD provides RS485 communication interfaces and adopts the communication based on the international standard Modbus communication protocol. You can implement centralized control (setting commands for controlling the VFD, modifying the running frequency and related function code parameters, and monitoring the working state and fault information of the VFD) through PC/PLC, upper control computer, or other devices to meet specific application requirements.

10.2 Modbus protocol introduction

Modbus is a communication protocol for use with electronic controllers. By using this protocol, a controller can communicate with other devices through transmission lines. It is a general industrial standard. With this standard, control devices produced by different manufacturers can be connected to form an industrial network and be monitored in a centralized way.

The Modbus protocol provides two transmission modes, namely American Standard Code for Information Interchange (ASCII) and remote terminal units (RTU). On one Modbus network, all the device transmission modes, baud rates, data bits, check bits, stop bits, and other basic parameters must be set consistently.

A Modbus network is a control network with one master and multiple slaves, that is, on one Modbus network, there is only one device serving as the master, and other devices are the slaves. The master can communicate with any single slave or with all slaves. For separate access commands, a slave needs to return a response. For broadcast information, slaves do not need to return responses.

10.3 Application of Modbus

The VFD uses the Modbus RTU mode and communicates through RS485 interfaces.

10.3.1 RS485

RS485 interfaces work in half-duplex mode and transmit data signals in the differential transmission way, which is also referred to as balanced transmission. An RS485 interface uses a twisted pair, where one wire is defined as A (+), and the other B (-). Generally, if the positive electrical level between the transmission drives A and B ranges from +2V to +6V, the logic is "1"; and if it ranges from -2V to -6V, the logic is "0".

The 485+ terminal on the terminal block of the VFD corresponds to A, and 485- corresponds to B.

The communication baud rate (P14.01) indicates the number of bits sent in a second, and the unit is bit/s (bps). A higher baud rate indicates faster transmission and poorer anti-interference capability. When a twisted pair of 0.56mm (24AWG) is used, the maximum transmission distance varies according to the baud rate, as described in the following table.

Baud rate	Baud rate Max. transmission distance		Max. transmission distance	
2400bps	1800m	9600bps	800m	
4800bps	1200m	19200bps	600m	

In long-distance RS485 communication, it is recommended that you use shielded cables, and use the shielding layer as the ground wire.

When there are fewer devices and the transmission distance is short, the whole network works well without terminal load resistors. The performance, however, degrades as the distance increases. Therefore, it is recommended that you use a 120Ω terminal resistor when the transmission distance is long.

10.3.1.1 Application to one VFD

Figure 10-1 is the Modbus wiring diagram of one VFD and a PC. Generally, PCs do not provide RS485 interfaces, and therefore you need to convert an RS232 interface or USB port of a PC to an RS485 interface. Connect end A of the RS485 communication cable to the 485+ port on the terminal block of the VFD, and connect end B to the 485- port. It is recommended that you use shielded twisted pairs. When an RS232-RS485 converter is used, the cable used to connect the RS232 interface of the PC and the converter cannot be longer than 15 m. Use a short cable when possible. It is recommended that you insert the converter directly into the PC. Similarly, when a USB-RS485 converter is used, use a short cable when possible.

After wiring, select the correct port (such as COM1 to connect the RS232-RS485 converter) on the upper computer, and set the basic parameters such as baud rate and data bit check consistent with those of the VFD.



Figure 10-1 RS485 wiring of one VFD

10.3.1.2 Application to multiple VFDs

In practical application to multiple VFDs, chrysanthemum connection and star connection are commonly used.

According to the requirements of the RS485 industrial bus standards, all the devices need to be connected in chrysanthemum mode with one 120 Ω terminal resistor at the first and last ends, as shown in Figure 10-2. Figure 10-3 shows the simplified wiring diagram. Figure 10-4 shows the actual application.

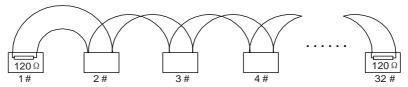


Figure 10-2 Onsite chrysanthemum connection

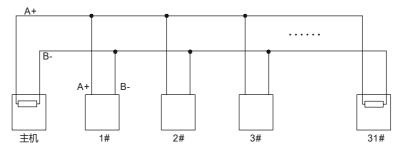


Figure 10-3 Simplified chrysanthemum connection

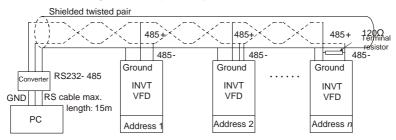


Figure 10-4 Practical chrysanthemum connection application

Figure 10-5 shows the start connection diagram. When this connection mode is adopted, the two devices that are farthest away from each other on the line must be connected with a terminal resistor (the two devices are devices #1 and #15).

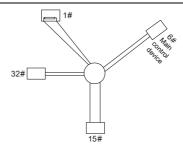


Figure 10-5 Star connection

Use shielded cables, if possible, in multi-device connection. The baud rates, data bit check settings, and other basic parameters of all the devices on the RS485 line must be set consistently, and addresses cannot be repeated.

10.3.2 RTU mode

10.3.2.1 RTU communication frame structure

When a controller is set to use the RTU communication mode on a Modbus network, every byte (8 bits) in the message includes 2 hexadecimal characters (each includes 4 bits). Compared with the ASCII mode, the RTU mode achieves transmission of more data at the same baud rate.

Code system

- 1 start bit
- 7 or 8 data bits; the minimum valid bit is transmitted first. Each frame domain of 8 bits includes 2 hexadecimal characters (0–9, A–F).
- 1 odd/even check bit; this bit is not provided if no check is needed.
- 1 stop bit (with check performed), 2 bits (without check)

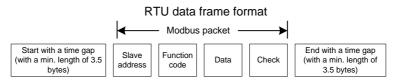
Error detection domain

· Cyclic redundancy check (CRC)

The following table describes the data format.

11-bit character frame (Bits 1 to 8 are data bits)

Start bit BIT1 BIT2 BIT3 BIT4	BIT5 BIT6 E	BIT7 BIT8 Check bit	Stop bit
-------------------------------	-------------	---------------------	----------


10-bit character frame (Bits 1 to 7 are data bits)

ı										
ı	Start bit	DIT1	DITO	DITO	DITA	DITE	DITC	DITT	Chook hit	Stop hit
ı	Start bit	DIII	DITZ	DIIO	DI14	DITO	DITO	DIII	CHECK DIL	Stop bit

In a character frame, only the data bits carry information. The start bit, check bit, and stop bit are used to facilitate the transmission of the data bits to the destination device. In practical applications, you must set the data bits, parity check bits, and stop bits consistently.

In RTU mode, the transmission of a new frame always starts from an idle time (the transmission time

of 3.5 bytes). On a network where the transmission rate is calculated based on the baud rate, the transmission time of 3.5 bytes can be easily obtained. After the idle time ends, the data domains are transmitted in the following sequence: slave address, operation command code, data, and CRC check character. Each byte transmitted in each domain includes 2 hexadecimal characters (0–9, A–F). The network devices always monitor the communication bus. After receiving the first domain (address information), each network device identifies the byte. After the last byte is transmitted, a similar transmission interval (the transmission time of 3.5 bytes) is used to indicate that the transmission of the frame ends. Then, the transmission of a new frame starts.

The information of a frame must be transmitted in a continuous data flow. If there is an interval greater than the transmission time of 1.5 bytes before the transmission of the entire frame is complete, the receiving device deletes the incomplete information, and mistakes the subsequent byte for the address domain of a new frame. Similarly, if the transmission interval between two frames is shorter than the transmission time of 3.5 bytes, the receiving device mistakes it for the data of the last frame. The CRC check value is incorrect due to the disorder of the frames, and thus a communication fault occurs.

The following table describes the standard structure of an RTU frame.

START (frame header)	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR (slave address	Communication address: 0-247 (decimal system) (0 is the broadcast
domain)	address)
CMD (function domain)	03H: read slave parameters
	06H: write slave parameters
Data domain	
DATA (N-1)	Data of 2×N bytes, main content of the communication as well as the
	core of data exchanging
DATA (0)	
CRC CHK LSB	Detection value CDC (4C hite)
CRC CHK MSB	Detection value: CRC (16 bits)
END (frame tail)	T1-T2-T3-T4 (transmission time of 3.5 bytes)

10.3.2.2 RTU communication frame error check methods

During the transmission of data, errors may occur due to various factors. Without check, the data receiving device cannot identify data errors and may make an incorrect response. The incorrect response may cause severe problems. Therefore, the data must be checked.

The check is implemented as follows: The transmitter calculates the to-be-transmitted data based on a specific algorithm to obtain a result, adds the result to the rear of the message, and transmits them together. After receiving the message, the receiver calculates the data based on the same algorithm to obtain a result, and compares the result with that transmitted by the transmitter. If the results are the same, the message is correct. Otherwise, the message is considered incorrect.

The error check of a frame includes two parts, namely, bit check on individual bytes (that is, odd/even check using the check bit in the character frame), and whole data check (CRC check).

Bit check on individual bytes (odd/even check)

You can select the bit check mode as required, or you can choose not to perform the check, which will affect the check bit setting of each byte.

Definition of even check: Before the data is transmitted, an even check bit is added to indicate whether the number of "1" in the to-be-transmitted data is odd or even. If it is even, the check bit is set to "0"; and if it is odd, the check bit is set to "1",

Definition of odd check: Before the data is transmitted, an odd check bit is added to indicate whether the number of "1" in the to-be-transmitted data is odd or even. If it is odd, the check bit is set to "0",; and if it is even, the check bit is set to "1".

For example, the data bits to be sent are "11001110", including five "1". If the even check is applied, the even check bit is set to "1"; and if the odd check is applied, the odd check bit is set to "0". During the transmission of the data, the odd/even check bit is calculated and placed in the check bit of the frame. The receiving device performs the odd/even check after receiving the data. If it finds that the odd/even parity of the data is inconsistent with the preset information, it determines that a communication error occurs.

Cyclic redundancy check (CRC)

A frame in the RTU format includes an error detection domain based on the CRC calculation. The CRC domain checks all the content of the frame. The CRC domain consists of two bytes, including 16 binary bits. It is calculated by the transmitter and added to the frame. The receiver calculates the CRC of the received frame, and compares the result with the value in the received CRC domain. If the two CRC values are not equal to each other, errors occur in the transmission.

During CRC, 0xFFFF is stored first, and then a process is invoked to process a minimum of 6 contiguous bytes in the frame based on the content in the current register. CRC is valid only for the 8-bit data in each character. It is invalid for the start, stop, and check bits.

During the generation of the CRC values, the "exclusive or" (XOR) operation is performed on the each 8-bit character and the content in the register. The result is placed in the bits from the least significant bit (LSB) to the most significant bit (MSB), and 0 is placed in the MSB. Then, LSB is detected. If LSB is 1, the XOR operation is performed on the current value in the register and the preset value. If LSB is 0, no operation is performed. This process is repeated for 8 times. After the last bit (8th bit) is detected and processed, the XOR operation is performed on the next 8-bit byte and the

current content in the register. The final values in the register are the CRC values obtained after operations are performed on all the bytes in the frame.

The calculation adopts the international standard CRC check rule. You can refer to the related standard CRC algorithm to compile the CRC calculation program as required.

The following example is a simple CRC calculation function for your reference (using the C programming language):

```
unsigned
           int
                 crc cal value (unsigned char*data value, unsigned
                                                                         char
data length)
    int i;
    unsigned int crc value=0xffff;
    while (data length--)
         crc value^=*data value++;
         for(i=0;i<8;i++)
              if(crc value&0x0001)
                   crc value=(crc value>>1)^0xa001;
              else
                   crc value=crc value>>1;
         }
    return(crc value);
```

In the ladder logic, CKSM uses the table look-up method to calculate the CRC value according to the content in the frame. The program of this method is simple, and the calculation is fast, but the ROM space occupied is large. Use this program with caution in scenarios where there are space occupation requirements on programs.

10.4 RTU command code and communication data

10.4.1 Command code 03H, reading N words (continuously up to 16 words)

The command code 03H is used by the master to read data from the VFD. The count of data to be read depends on the "data count" in the command. A maximum of 16 pieces of data can be read. The addresses of the read parameters must be contiguous. Each piece of data occupies 2 bytes, that is, one word. The command format is presented using the hexadecimal system (a number followed by "H" indicates a hexadecimal value). One hexadecimal value occupies one byte.

The 03H command is used to read information including the parameters and running status of the VFD.

For example, if the master reads two contiguous pieces of data (that is, to read content from the data

addresses 0004 H and 0005 H) from the VFD whose address is 01H, the command frame structure is described in the following.

RTU master command (from the master to the VFD) is as follows:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR (address)	01H
CMD (command code)	03H
Start address MSB	00H
Start address LSB	04H
Data count MSB	00H
Data count LSB	02H
CRC LSB	85H
CRC MSB	CAH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

The value in START and END is "T1-T2-T3-T4 (transmission time of 3.5 bytes)", indicating that the RS485 needs to stay idle for at least the transmission time of 3.5 bytes. An idle time is required to distinguish on message from another to ensure that the two messages are not regarded as one.

"ADDR" is "01H", indicating that the command is sent to the VFD whose address is 01H. "ADDR" occupies one byte.

"CMD" is "03H", indicating that the command is used to read data from the VFD. "CMD" occupies one byte.

"Start address" means reading data from the address and it occupies two bytes with the MSB on the left and LSB on the right.

"Data count" indicates the count of data to be read (unit: word). "Start address" is "0004H" and "Data count" is "0002H", which indicates reading data from the addresses 0004H and 0005H.

CRC check occupies two bytes, with the LSB on the left, and MSB on the right.

RTU slave response (from the VFD to the master) is as follows:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	01H
CMD	03H
Number of bytes	04H
MSB of data in 0004H	13H
LSB of data in 0004H	88H
MSB of data in 0005H	00H
LSB of data in 0005H	00H
CRC LSB	7EH

CRC MSB	9DH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

The definition of the response information is described as follows:

"ADDR" is "01H", indicating that the command is sent from the VFD whose address is 01H. "ADDR" occupies one byte.

"CMD" is "03H", indicating that the message is a VFD response to the 03H command from the master for reading data. "CMD" occupies one byte.

"Number of bytes" indicates the number of bytes between a byte (not included) and the CRC byte (not included). The value "04" indicates that there are four bytes of data between "Number of bytes" and "CRC LSB", that is, "MSB of data in 0004H", "LSB of data in 0004H", "MSB of data in 0005H", and "LSB of data in 0005H".

A piece of data contains two bytes, with the MSB on the left and LSB on the right. From the response, the data in 0004H is 1388H, and that in 0005H is 0000H.

CRC check occupies two bytes, with the LSB on the left, and MSB on the right.

10.4.2 Command code 06H, writing a word

This command is used by the master to write data to the VFD. One command can be used to write only one piece of data. It is used to modify the parameters and running mode of the VFD.

For example, if the master writes 5000 (1388H) to 0004H of the VFD whose address is 02H, the frame structure is as follows.

RTU master command (from the master to the VFD) is as follows:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H
CMD	06H
MSB of data writing address	00H
LSB of data writing address	04H
MSB of data content	13H
LSB of data content	88H
CRC LSB	C5H
CRC MSB	6EH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

RTU slave response (from the VFD to the master) is as follows:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H
CMD	06H
MSB of data writing address	00H

LSB of data writing address	04H
MSB of data content	13H
LSB of data content	88H
CRC LSB	C5H
CRC MSB	6EH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

Note: The sections 10.4.1 Command code 03H, reading N words (continuously up to 16 words) and 10.4.2 Command code 06H, writing a word mainly describe the command formats. For the detailed application, see the examples in section 10.4.7 Read/Write operation examples.

10.4.3 Command code 10H, continuous writing

The command code 10H is used by the master to write data to the VFD. The count of data to be written is determined by "Data quantity", and a maximum of 16 pieces of data can be written.

For example, if the master writes 5000 (1388H) and 50 (0032H) to 0004H and 0005H of the VFD whose address is 02H, the frame structure is as follows.

RTU master command (from the master to the VFD) is as follows:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H
CMD	10H
MSB of data writing address	00H
LSB of data writing address	04H
Data count MSB	00H
Data count LSB	02H
Number of bytes	04H
MSB of data 0004H content	13H
LSB of data 0004H content	88H
MSB of data 0005H content	00H
LSB of data 0005H content	32H
CRC LSB	C5H
CRC MSB	6EH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

RTU slave response (from the VFD to the master) is as follows:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H
CMD	10H
MSB of data writing address	00H
LSB of data writing address	04H

Data count MSB	00H
Data count LSB	02H
CRC LSB	C5H
CRC MSB	6EH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

10.4.4 Data address definition

This section describes the address definition of communication data. The addresses are used for controlling the running, obtaining the state information, and setting related function parameters of the VFD.

10.4.4.1 Function code address format rules

The address of a function code consists of two bytes, with the high-order byte on the left and low-order byte on the right. The high-order byte ranges from 00 to ffH, and the low-order byte also ranges from 00 to ffH. The high-order byte is the hexadecimal form of the group number before the dot mark, and low-order byte is that of the number behind the dot mark. Take P05.06 as an example. The group number is 05, that is, the MSB of the parameter address is the hexadecimal form of 05; and the number behind the dot mark is 06, that is, the LSB is the hexadecimal form of 05. Therefore, the function code address is 0506H in the hexadecimal form. For P10.01, the parameter address is 0A01H.

Function code	Name	Description	Setting range	Default	Modify
P10.00	Simple PLC mode	Stop after running once Keep running with the final value after running once Cyclic running	0–2	0	0
P10.01	Simple PLC memory selection	O: Do not memorize at power outage Hemorize at power outage	0–1	0	0

Note:

- The parameters in the P99 group are set by the manufacturer and cannot be read or modified.
 Some parameters cannot be modified when the VFD is running; some cannot be modified regardless of the VFD status. Pay attention to the setting range, unit, and description of a parameter when modifying it.
- The service life of the Electrically Erasable Programmable Read-Only Memory (EEPROM) may be reduced if it is frequently used for storage. Some function codes do not need to be stored during communication. The application requirements can be met by modifying the value of the on-chip RAM, that is, modifying the MSB of the corresponding function code address from 0 to 1.
 For example, if P00.07 is not to be stored in the EEPROM, you need only to modify the

value of the RAM, that is, set the address to 8007H. The address can be used only for writing data to the on-chip RAM, and it is invalid when used for reading data.

10.4.4.2 Addresses of other Modbus functions

In addition to modifying the parameters of the VFD, the master can also control the VFD, such as starting and stopping it, and monitoring the operation status of the VFD. The following table describes other function parameters.

Addres				
Function	Definition	Data description		
		0001H: Forward running		
		0002H: Reverse running		
		0003H: Forward jogging		
Communication-based		0004: Reverse jogging		
control command		0005H: Stop	R/W	
		0006H: Coast to stop		
		0007H: Fault reset		
		0008H: Jogging stop		
	2001H	Communication-based frequency setting (0-Fmax, unit: 0.01Hz)		
	2002H	PID reference (0–1000, in which 1000 corresponds to 100.0%)	R/W	
	2003H	PID feedback (0-1000, in which 1000 corresponds to 100.0%)	R/W	
	2004H	Torque setting (-3000–3000, in which 1000 corresponds to 100.0% of the motor rated current)		
	2005H	Upper limit setting of forward running frequency (0-Fmax; unit: 0.01Hz)	R/W	
Communication-based	2006H	Upper limit setting of reverse running frequency (0-Fmax; unit: 0.01Hz)	R/W	
setting address	2007H	Upper limit of the electromotive torque (0–3000, in which 1000 corresponds to 100.0% of the motor rated current)	R/W	
	2008H	Braking torque upper limit (0–3000, in which 1000 corresponds to 100.0% of the motor rated current)	R/W	
	2009Н	Special CW Bit1-Bit0: = 00: Motor 1 =01: Motor 2 Bit2: =1 Enable speed/torque control switchover =0: Disable speed/torque control switchover Bit3: =1 Clear electricity consumption data =0: Keep electricity consumption data Bit4: =1 Enable pre-excitation =0: Disable pre-excitation Bit5: =1 Enable DC braking =0: Disable DC braking	R/W	

Function	Address Definition	Data description	R/W
	200AH	Virtual input terminal command. Range: 0x000–0x3FF (corresponding to S8/S7/S6/S5/HDIB/HDIA/S4/S3/S2/S1 in sequence)	R/W
	200BH	Virtual output terminal command. Range: 0x00–0x0F (corresponding to local RO2/RO1/HDO/Y1)	R/W
	200CH	Voltage setting (special for V/F separation) (0–1000, in which 1000 corresponds to 100% of the motor rated voltage)	R/W
	200DH	AO setting 1 (-1000-+1000, in which 1000 corresponding to 100.0%)	R/W
	200EH	AO setting 2 (-1000-+1000, in which 1000 corresponding to 100.0%)	R/W
VFD status word 1	2100H	0001H: Forward running 0002H: Running reversely 0003H: Stopped 0004H: Faulty 0005H: In POFF state 0006H: In pre-exciting state	R
VFD status word 2	2101H	Bit0: =0: Not ready to run =1: Ready to run Bit2-Bit1: =00: Motor 1 =01: Motor 2 Bit3: =0: AM =1: SM bit4: =0: No overload alarm =1: Overload alarm Bit6-bit5=00: Keypad-based control	R
VFD fault code	2102H	See the description of fault types.	R
VFD identification	2103H	GD350-190x2200	R

Function	Address Definition	Data description			
code	Deminion				
Running frequency	3000H	0–Fmax (Unit: 0.01Hz)	R		
Set frequency	3001H	0–Fmax (Unit: 0.01Hz)	R		
Bus voltage	3002H	0.0–2000.0V (Unit: 0.1V)	R		
Output voltage	3003H	0–1200V (Unit: 1V)	R		
Output current	3004H	0.0–3000.0A (Unit: 0.1A)	R		
Rotation speed of running	3005H	0–65535 (Unit: 1 RPM)	R		
Output power	3006H	-300.0–300.0% (Unit: 0.1%)	R		
Output torque	3007H	-250.0–250.0% (Unit: 0.1%)	R		
Closed-loop setting	3008H	-100.0–100.0% (Unit: 0.1%)	R		
Closed-loop feedback	3009H	-100.0–100.0% (Unit: 0.1%)	R		
Input I/O status	300AH	0000-FFF BIT11 BIT10 BIT9 BIT8 BIT7 BIT6 S8 S7 S6 S5 / BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 HDIB HDIA S4 S3 S2 S1	R		
Output I/O status	300BH	000—1FFF Compatible BIT13 BIT12 BIT11 BIT10 BIT9 BIT8 BIT7 with CHF100A / RO4 RO3 / / Y2 / BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 / / / RO2 RO1 HDO Y1	R		
Analog input 1	300CH	0.00–10.00V (Unit: 0.01V)	R		
Analog input 2	300DH	0.00-10.00V (Unit: 0.01V)	R		
Analog input 3	300EH	-10.00–10.00V (Unit: 0.01V)	R		
Analog input 4	300FH	/	R		
Read input of HDIA high-speed pulse	3010H	0.00–50.00kHz (Unit: 0.01Hz)	R		
Read input of HDIB high-speed pulse	3011H	/	R		
Read the actual step of multi-step speed	3012H	0–15	R		
External length value	3013H	0–65535	R		
External counting value	3014H	0–65535	R		
Torque setting	3015H	-300.0–300.0% (Unit: 0.1%)	R		
VFD identification code	3016H	/	R		
Fault code	5000H	/	R		

The Read/Write (R/W) characteristics indicate whether a function parameter can be read and written.

For example, "Communication-based control command" can be written, and therefore the command code 06H is used to control the VFD. The R characteristic indicates that a function parameter can only be read, and W indicates that a function parameter can only be written.

Note: Some parameters in the preceding table are valid only after they are enabled. Take the running and stop operations as examples, you need to set "Running command channel" (P00.01) to "Communication", and set "Communication mode of running commands" (P00.02) to Modbus. For another example, when modifying "PID reference", you need to set "PID reference source" (P09.00) to Modbus communication.

The following table describes the encoding rules of device codes (corresponding to the VFD identification code 2103H).

8 MSBs	Meaning	8 LSBs	Meaning
22	Crane industry	0x00	Goodrive350-19 VFD for crane

10.4.5 Fieldbus scale

In practical applications, communication data is represented in the hexadecimal form, but hexadecimal values cannot represent decimals. For example, 50.12 Hz cannot be represented in the hexadecimal form. In such cases, multiply 50.12 by 100 to obtain an integer 5012, and then 50.12 can be represented as 1394H in the hexadecimal form (5012 in the decimal form).

In the process of multiplying a non-integer by a multiple to obtain an integer, the multiple is referred to as a fieldbus scale.

The fieldbus scale depends on the number of decimal places in the value specified in "Setting range" or "Default". If there are n (for example, 1) decimal places in the value, the fieldbus scale m (then m=10) is the result of 10 to the power of n. Take the following table as an example.

Function code	Name	Description	Setting range	Default	Modify
P01.20	Wake-up-from-sleep delay	0.0–3600.0s (valid only when P01.19 ones place=2)	0.00–3600.0	0.0s	0
P01.21	Power-off restart selection	Disable restart Enable restart	0–1	0	0

The value specified in "Setting range" or "Default" contains one decimal place, and therefore the fieldbus scale is 10. If the value received by the upper computer is 50, "Delay of auto fault reset" of the rectifier is 5.0 (5.0=50/10).

To set "Wake-up-from-sleep delay" to 5.0s through Modbus communication, you need first to multiply 5.0 by 10 according to the scale to obtain an integer 50, that is, 32H in the hexadecimal form, and then send the following write command:

 01
 06
 01 14
 00 32
 49 E7

 VFD address command address
 Write address command address
 Parameter address data
 CRC

After receiving the command, the VFD converts 50 into 5.0 based on the fieldbus scale, and then sets "Wake-up-from-sleep delay" to 5.0s.

For another example, after the upper computer sends the "Wake-up-from-sleep delay" parameter read command, the master receives the following response from the VFD:

 01
 03
 02
 00 32
 39 91

 VFD
 Read 2-byte address
 Parameter data
 CRC

The parameter data is 0032H, that is, 50, and therefore 5.0 is obtained based on the fieldbus scale (50/10=5.0). In this case, the master identifies that "Wake-up-from-sleep delay" is 5.0s.

10.4.6 Error message response

Operation errors may occur in communication-based control. For example, some parameters can only be read, but a write command is sent. In this case, the VFD returns an error message response.

Error message responses are sent from the VFD to the master. The following table lists the codes and definitions of the error message responses.

Code	Name	Definition
		The command code received by the upper computer is not allowed to be
	Invalid	executed. The possible causes are as follows:
01H	command	The function code is applicable only on new devices and is not
	command	implemented on this device.
		The slave is in the faulty state when processing this request.
	Invalid data	For the VFD, the data address in the request of the upper computer is not
02H	address	allowed. In particular, the combination of the register address and the
	address	number of the to-be-sent bytes is invalid.
		The received data domain contains a value that is not allowed. The value
03H	Invalid data	indicates the error of the remaining structure in the combined request.
0311	value	Note: It does not mean that the data item submitted for storage in the
		register includes a value unexpected by the program.
04H	Operation	The parameter setting is invalid in the write operation. For example, a
0411	failure	function input terminal cannot be set repeatedly.
05H	Incorrect	The password entered in the password verification address is different from
password		that is specified by P07.00.
Data frame		The data frame sent from the upper computer is incorrect in the length, or in
06H	error	the RTU format, the value of the CRC check bit is inconsistent with the CRC
	enoi	value calculated by the lower computer.

Code	Name	Definition				
07H	Parameter	The parameter to be modified in the write operation of the host controller is				
0/11	read-only	a read-only parameter.				
	Parameter					
08H	cannot be	The parameter to be modified in the write operation of the host controller				
ООП	modified in	cannot be modified during the running of the VFD.				
	running.					
	Password	If the upper computer does not provide the correct password to unlock the				
09H		system to perform a read or write operation, the error of "system being				
	protection	locked" is reported.				

When returning a response, the slave uses a function code domain and fault address to indicate whether it is a normal response (no error) or exception response (an error occurs). In a normal response, the slave returns the corresponding function code and data address or sub-function code. In an exception response, the slave returns a code that is equal to a normal code, but the first bit is logic 1.

For example, if the master sends a request message to a slave for reading a group of function code address data, the following code is generated:

0 0 0 0 0 1 1 (03H in the hexadecimal form)

In a normal response, the slave returns the same function code. In an exception response, the slave returns the following code:

1 0 0 0 0 0 1 1 (83H in the hexadecimal form)

In addition to the modification of the code, the slave returns a byte of exception code that describes the cause of the exception. After receiving the exception response, the typical processing of the master is to send the request message again or modify the command based on the fault information.

For example, to set the "Channel of running commands" (P00.01, the parameter address is 0001H) to 03 for the VFD whose address is 01H, the command is as follows:

<u>01</u>	<u>06</u>	<u>00 01</u>	<u>00 03</u>	<u>98 0B</u>
VFD address	Write command	Parameter address	Parameter data	CRC

However, the "Running command channel" ranges from 0 to 2. The value 3 is out of the setting range. In this case, the VFD returns an error message response as shown in the following:

<u>01</u>	<u>86</u>	<u>04</u>	<u>43 A3</u>
VFD	Exception	Error code	CRC
address	response code		

The exception response code 86H (generated based on the highest-order bit "1" of the write command 06H) indicates that it is an exception response to the write command (06H). The error code is 04H, which indicates "Operation failure".

10.4.7 Read/Write operation examples

For the read/write command formats, see 10.4.1 Command code 03H, reading N words (continuously up to 16 words) and 10.4.2 Command code 06H, writing a word.

10.4.7.1 Example of reading command 03H

Example 1: Read SW 1 of the VFD whose address is 01H. According to the table of other Modbus function addresses in 10.4.4.2 Addresses of other Modbus functions, the parameter address of SW 1 of the VFD is 2100H.

The read command transmitted to the VFD is as follows:

<u>01</u>	<u>03</u>	<u>21 00</u>	<u>00 01</u>	<u>8E 36</u>
VFD address	Read command	Parameter address	Data quantity	CRC

Assume that the following response is returned:

<u>01</u>	<u>03</u>	<u>02</u>	<u>00 03</u>	<u>F8 45</u>
VFD address	Read command	Number of bytes	Data content	CRC

The data content returned by the VFD is 0003H, which indicates that the VFD is in the stopped state.

Example 2: View information about the VFD whose address is 03H, including "Type of present fault" (P07.27) to "Type of 5th-last fault" (P07.32) of which the parameter addresses are 071BH–0720H (contiguous 6 parameter addresses starting from 071BH).

The command transmitted to the VFD is as follows:

<u>03</u>	<u>03</u>	<u>07 1B</u>	<u>00 06</u>	<u>B5 59</u>
VFD address	Read command	Start address	6 parameters in total	CRC

Assume that the following response is returned:

<u>03</u>	<u>03</u> <u>0C</u>	<u>00 23</u>	<u>00 23</u>	<u>00 23</u>	<u>00 23</u>	<u>00 23</u>	<u>00 23</u>	<u>5F D2</u>
VFD address	Read Number of command bytes	of Type of current fault	Type of last fault	Type of last but one fault		Type of last but three fault	Type of last but four fault	CRC

According to the returned data, all the fault types are 0023H, that is, 35 in the decimal form, which means the STo fault

10.4.7.2 Example of writing command 06H

Example 1: Set the VFD whose address is 03H to run forward. According to the table of other Modbus function addresses in 10.4.4.2 Addresses of other Modbus functions, the address of "Communication-based control command" is 2000H, and 0001H indicates forward running.

Function	Address	Data description	R/W
0		0001H: Forward running	
Communication-based	2000H	0002H: Reverse running	R/W
control command		0003H: Forward jogging	

Function	Address	Data description	R/W
		0004: Reverse jogging	
		0005H: Stop	
		0006H: Coast to stop	
		0007H: Fault reset	
		0008H: Jogging stop	

The command sent from the master is as follows:

<u>03</u>	<u>06</u>	<u>20 00</u>	<u>00 01</u>	<u>42 28</u>
VFD address	Write	Parameter address	Forward running	CRC

If the operation is successful, the following response (same as the command transmitted from the master) is returned:

<u>03</u>	<u>06</u>	<u>20 00</u>	<u>00 01</u>	<u>42 28</u>
VFD address	Write	Parameter address	Forward	CRC

Example 2: Set the max. output frequency to 100Hz for the VFD with the address of 03H.

Function code	Name	Description	Setting range	Default	Modify
P00.03	Max. output frequency	P00.04–630.00Hz (400.00Hz)	100.00–630.00	50.00Hz	0

According to the number of decimal places, the fieldbus scale of the "Max. output frequency" (P00.03) is 100. Multiply 100kHz by 100. The value 10000 is obtained, and it is 2710H in the hexadecimal form.

The command sent from the master is as follows:

<u>03</u>	<u>06</u>	<u>00 03</u>	<u>27 10</u>	<u>62 14</u>
VFD address	Write	Parameter	Parameter data	CRC

If the operation is successful, the following response (same as the command transmitted from the master) is returned:

<u>03</u>	<u>06</u>	<u>00 03</u>	<u>27 10</u>	<u>62 14</u>
VFD address	Write command	Parameter address	Parameter data	CRC

Note: In the preceding command description, spaces are added to a command just for explanatory purposes. In practical applications, no space is required in the commands.

10.4.7.3 Example of continuous writing command 10H

Example 1: Set the VFD whose address is 01H to be forward running at the frequency of 10Hz. According to the table of other Modbus function addresses, the address of "Communication-based control command" is 2000H, and 0001H indicates forward running. The address of "Communication-based value setting" is 2001H, and 10Hz corresponds to 03E8H in the hexadecimal

form.

Function	Address	Data description	R/W	
		0001H: Forward running		
		0002H: Reverse running		
		0003H: Forward jogging		
Communication-based	000011	0004: Reverse jogging	D.44/	
control command		0005H: Stop	R/W	
		0006H: Coast to stop		
		0007H: Fault reset		
		0008H: Jogging stop		
	2001H	Communication-based frequency setting (0-Fmax,		
Communication-based	200111	unit: 0.01Hz)	R/W	
setting address	200211	PID reference (0-1000, in which 1000 corresponds	rx/VV	
	2002H	to 100.0%)		

In the actual operation, set P00.01 to 2 and P00.06 to 8.

The command sent from the master is as follows:

<u>01</u>	<u>10</u>	<u> 20 00</u>	<u>00 02</u>	<u>04</u>	<u>00 01</u>	<u>03 E8</u>	<u>3B 10</u>
VFI addre		Parameter address	Parameter quantity	Number of bytes	Froward running	10 Hz	CRC

If the operation is successful, the following response is returned:

<u>01</u>	<u>10</u>	<u> 20 00</u>	<u>00 02</u>	<u>4A 08</u>
VFD address	Continuous write	Parameter address	Parameter quantity	CRC
	command			

Example 2: Set "Acceleration time" of the VFD whose address is 01H to 10s, and "Deceleration time" to 20s.

P00.11	ACC time 1		Model	0
		D00 11 and D00 12 anting renge; 0.0, 2000 0a	depended	
P00.12	P00 12 DEC time 1	P00.11 and P00.12 setting range: 0.0–3600.0s	Model	
P00.12 DEC time 1			depended	

The address of P00.11 is 000B, 10s is 0064H in the hexadecimal form, and 20s is 00C8H in the hexadecimal form.

The command sent from the master is as follows:

<u>01</u>	<u>10</u>	<u>00 0B</u>	<u>00 02</u>	04	<u>00 64</u>	<u>00 C8</u>	F2 55
VFD address	Continuous write command	Parameter address	Parameter quantity	Number of bytes	10s	20s	CRC

If the operation is successful, the following response is returned:

 01
 10
 00 0B
 00 02
 30 0A

 VFD address write address command
 Parameter address quantity
 Parameter quantity
 CRC

Note: In the preceding command description, spaces are added to a command just for explanatory purposes. In practical applications, no space is required in the commands.

10.4.7.4 Example of Modbus communication commissioning

In the following example, a PC is used as the master, an RS232-RS485 converter is used for signal conversion, and the PC serial port used by the converter is COM1 (an RS232 port). The upper computer commissioning software is the serial port commissioning assistant Commix, which can be downloaded from the Internet. Download a version that can automatically execute the CRC check function. The following figure shows the interface of Commix.

First, set the serial port to **COM1**. Then, set the baud rate consistently with P14.01. The data bits, check bits, and stop bits must be set consistently with P14.02. If the RTU mode is selected, you need to select the hexadecimal form **Input HEX**. To set the software to automatically execute the CRC

function, you need to select **ModbusRTU** with ModbusRTU, select **CRC16** (**MODBU SRTU**), and set the start byte to **1**. After the auto CRC check function is enabled, do not enter CRC information in commands. Otherwise, command errors may occur due to repeated CRC check.

The commissioning command to set the VFD whose address is 03H to run forward is as follows:

VFD Write address command address Forward running CRC

Note:

- The VFD address (P14.00) must be set to 03.
- "Channel of running commands" (P00.01) must be set to "Communication", and "Communication"

channel of running commands" (P00.02) to the Modbus channel.

 Click Send. If the line configuration and settings are correct, a response transmitted by the VFD is received as follows:

10.4.8 Common communication faults

Common communication faults include the following:

- No response is returned.
- The VFD returns an exception response.

Possible causes of no response include the following:

- The serial port is set incorrectly. For example, the adapter uses the serial port COM1, but COM2 is selected for the communication.
- The settings of the baud rates, data bits, stop bits, and check bits are inconsistent with those set on the VFD.
- The positive pole (+) and negative pole (-) of the RS485 bus are connected reversely.
- The resistor connected to 485 terminals on the terminal block of the VFD is set incorrectly.

11 Short description of communication PZD

In many crane applications, CANopen, PROFIBUS, PROFINET, and EtherNet IP communication control words (CWs) and status words (SWs) are controlled by bit. INVT CWs and SWs are expressed in format of number. You can choose to use the CWs and SWs special for port crane applications or INVT standard CWs and SWs by setting P16.72.

Function code	Name	Description	Setting
P16.72	CW and SW selection	0x00–0x74 Ones place: CW and SW selection 0: Standard CW and SW 1: CW and SW 1 for dedicated applications 2: CW and SW for special CANopen 3: CW and SW 2 for dedicated applications 4: CW and SW 2 for special CANopen Tens place: Reserved	Ones place=1 or 3

11.1 Dedicated CW (P16.72 ones place=1 or 3)

Bit	Name	Value	State/Description
0		1	Run forward
1		1	Run reversely
2	OOMMAND DVTE	1	Jog forward
3	COMMAND BYTE Communication-based control	1	Jog reversely
4	communication-based control	1	Decelerate to stop
5	Command	1	Coast to stop
6		1	Fault reset
7		1	Enabling run
8	WIRTE ENABLE	1	Enable read and write (PKW1-PKW4)
	MOTOR GROUP SELECTION	00	MOTOR GROUP 1 SELECTION
9–10		01	MOTOR GROUP 2 SELECTION
9-10		02	MOTOR GROUP 3 SELECTION
		03	MOTOR GROUP 4 SELECTION
11	Targua/anood awitahayar	0	Switch to speed control
11	Torque/speed switchover	1	Switch to torque control
12	External fault	1	External fault
40	DDE EVOLATION	0	Disable pre-exciting
13	PRE-EXCIATION	1	Enable pre-exciting

Bit	Name	Value	State/Description		
When P16.72 ones place=1, bit 14 is defined as follows:					
4.4	Torque limit value setting		Disable torque limit value setting		
14	(Reserved)	1	Enable torque limit value setting		
When P1	When P16.72 ones place=3, bit 14 is defined as follows:				
4.4	HEARTBEAT REF	0	Disable heartbeat		
14		1	Enable heartbeat		
45	Zero torque reference function	0	Disable zero torque reference function		
15		1	Enable zero torque reference function		

11.2 Dedicated SW (P16.72 ones place=1 or 3)

Bit	Name	Value	State/Description
0		1	Running forward
1		1	Running reversely
2		1	Stopped
3	RUN STATUS BYTE	1	In fault
4	RUN STATUS BYTE	1	Ready
5		1	Pre-exciting
6		1	Brake status
7		1	Warning
8		1	Status of multi-step speed terminal 1
9	Multi-step speed terminal	1	Status of multi-step speed terminal 2
10	status	1	Status of multi-step speed terminal 3
11		1	Status of multi-step speed terminal 4
	Motor group feedback	0(0x00)	Feedback from motor 1
12–13		1(0x01)	Feedback from motor 2
12-13		2(0x10)	Feedback from motor 3
		3(0x11)	Feedback of motor 4 (Reserved)
When P1	6.72 ones place=1, bit 14 and b	it 15 are de	efined as follows:
		0(0x00)	Keypad-based control
14–15	Dunning mode coloction	1(0x01)	Terminal-based control
14-15	Running mode selection	2(0x10)	Communication-based control
		3(0x11)	Reserved
When P1	6.72 ones place=3, bit 14 and b	it 15 are de	efined as follows:
14	Reserved		
15	Lloarthoat foodbook	0	No heartbeat feedback
15	Heartbeat feedback	1	With heartbeat feedback

11.3 Short description of CANopen/PROFIBUS DP communication PZD

Received parameters:

Function code	Name	Description
P15.02	Received PZD2	
P15.03	Received PZD3	0: Invalid
P15.04	Received PZD4	1: Set frequency (-Fmax–Fmax, unit: 0.01Hz)
P15.05	Received PZD5	
P15.06	Received PZD6	26: Reference encoder pulse MSBs
P15.07	Received PZD7	27: Reference encoder pulse LSBs
P15.08	Received PZD8	
P15.09	Received PZD9	47: ACC time (0–1000 corresponds to 0.0–100.0s)
P15.10	Received PZD10	47: DEC time (0–1000 corresponds to 0.0–100.0s)
P15.11	Received PZD11	49: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59)
P15.12	Received PZD12	-correspond to F14.45-F14.59)

When the option "1: Set frequency (-Fmax–Fmax, unit: 0.01Hz)" is selected, it is applicable only when P00.06 (Setting channel of A frequency command) is set to PROFIBUS DP communication, and a negative value indicates reverse rotating, while a positive value indicates forward rotating.

Function code	Name	Description	Setting
P00.06	Setting channel of A	9: PROFIBUS/CANopen/DeviceNet	9
1 00.00	frequency command	communication	3

When "26: Reference encoder pulse MSBs" or "27: Reference encoder pulse LSBs" is selected, it must be used together with P20.15.

	Description	Setting
mode	•	2
	mode	red measurement CANopen/PROFIBUS DP communication

When "47: ACC time" or "48: DEC time" is used, it must be used together with P16.73.

Function code	Name		Description				Setting
P16.73	Communication set	1:	PROFIBUS	DP	or	CANopen	1
F 10.73	ACC/DEC time selection	con	nmunication	'			

When "49: Function parameter mapping" is used, it must be used together with P14.48-P14.59.

Function code	Name	Description	Setting
P14.48	Channel selection for mapping between PZDs and function codes	0x00–0x12 Ones place: Channel for mapping function codes to PZDs 0: Reserved 1: Group P15 2: Group P16 Tens place: Save function at power off 0: Disable 1: Enable	0x11
P14.49	Mapped function code of received PZD2	0x0000–0xFFFF Set the function code address to be mapped. For example, if the parameter to be mapped is P85.04, set it to 0x5504.	0x0000
P14.50	Mapped function code of received PZD3	0x0000-0xFFFF	0x0000
P14.51	Mapped function code of received PZD4	0x0000-0xFFFF	0x0000
P14.52	Mapped function code of received PZD5	0x0000–0xFFFF	0x0000
P14.53	Mapped function code of received PZD6	0x0000-0xFFFF	0x0000
P14.54	Mapped function code of received PZD7	0x0000-0xFFFF	0x0000
P14.55	Mapped function code of received PZD8	0x0000–0xFFFF	0x0000
P14.56	Mapped function code of received PZD9	0x0000–0xFFFF	0x0000
P14.57	Mapped function code of received PZD10	0x0000-0xFFFF	0x0000
P14.58	Mapped function code of received PZD11	0x0000-0xFFFF	0x0000
P14.59	Mapped function code of received PZD12	0x0000-0xFFFF	0x0000

Sent parameters

Function code	Name	Description
P15.13	Sent PZD2	
P15.14	Sent PZD3	
P15.15	Sent PZD4	
P15.16	Sent PZD5	0: Invalid
P15.17	Sent PZD6	25: Status word 2
P15.18	Sent PZD7	25. Status word 2
P15.19	Sent PZD8	67: Function parameter mapping (PZD2–PZD12
P15.20	Sent PZD9	correspond to P14.60–P14.70)
P15.21	Sent PZD10	,
P15.22	Sent PZD11	
P15.23	Sent PZD12	

When "25: SW2" is selected, the bit information is described as follows.

Bit	Name	Value	State/Description
0	VAII	0	Not ready to run
0	Whether it is ready to run	1	Ready to run
		00	Motor 1
1–2	Mataragas	01	Motor 2
1-2	Motor group	10	Motor 3
		11	Reserved
2	Matantina	0	AM
3	Motor type	1	SM
4	Overload pre-alarm	0	No overload pre-alarm
4		1	Overload pre-alarm
	Control mode	00	Keypad-based control
5–6		01	Terminal-based control
5-6		10	Communication-based control
		11	Reserved
7		Re	served
	Conned/Torrava control	0	Speed control
8	Speed/Torque control	1	Torque control
0	Decition control	0	Non-position control
9	Position control	1	Position control
		00	Vector 0
10–11	Control mode	01	Vector 1
		10	Closed-loop vector control

Bit	Name	Value	Value State/Description		
		11 Space voltage vector control			
40	Brake status	0	Brake closed		
12	(when P90.04=1)	1	Brake released		
40	Positioning reached	0	Positioning not reached		
13		1	Positioning reached		

When "67: Function parameter mapping" is used, it must be used together with P14.48, and P14.60-P14.70.

Function code	Name	Description	Setting
P14.48	Channel selection for mapping between PZDs and function codes	0x00–0x12 Ones place: Channel for mapping function codes to PZDs 0: Reserved 1: Group P15 2: Group P16 Tens place: Save function at power off 0: Disable 1: Enable	0x11
P14.60	Mapped function code of sent PZD2	0x0000–0xFFFF Set the function code address to be mapped. For example, if the parameter to be mapped is P94.39, set it to 0x5E27.	0x0000
P14.61	Mapped function code of sent PZD3	0x0000-0xFFFF	0x0000
P14.62	Mapped function code of sent PZD4	0x0000-0xFFFF	0x0000
P14.63	Mapped function code of sent PZD5	0x0000-0xFFFF	0x0000
P14.64	Mapped function code of sent PZD6	0x0000-0xFFFF	0x0000
P14.65	Mapped function code of sent PZD7	0x0000-0xFFFF	0x0000
P14.66	Mapped function code of sent PZD8	0x0000-0xFFFF	0x0000
P14.67	Mapped function code of sent PZD9	0x0000-0xFFFF	0x0000
P14.68	Mapped function code of	0x0000-0xFFFF	0x0000

Function code	Name	Description	Setting
	sent PZD10		
P14.69	Mapped function code of sent PZD11	0x0000-0xFFFF	0x0000
P14.70	Mapped function code of sent PZD12	0x0000-0xFFFF	0x0000

11.4 Short description of PROFINET/EtherNet IP communication PZD

Received parameters:

Function code	Name	Description
P16.32	Received PZD2	
P16.33	Received PZD3	0: Invalid
P16.34	Received PZD4	1: Set frequency (0–Fmax, unit: 0.01Hz)
P16.35	Received PZD5	
P16.36	Received PZD6	26: Reference encoder pulse MSBs
P16.37	Received PZD7	27: Reference encoder pulse LSBs
P16.38	Received PZD8]
P16.39	Received PZD9	47: ACC time (0–1000 corresponds to 0.0–100.0s)
P16.40	Received PZD10	47: DEC time (0–1000 corresponds to 0.0–100.0s) 49: Function parameter mapping (PZD2–PZD12
P16.41	Received PZD11	correspond to P14.49–P14.59)
P16.42	Received PZD12	-correspond to F 14.49-F 14.59)

When "26: Reference encoder pulse MSBs" or "27: Reference encoder pulse LSBs" is selected, it must be used together with P20.15.

Function code	Name	Description	Setting
P20.15	Speed measurement mode	3: Pulses are obtained through PROFINET/EtherNet IP communication to measure the speed.	3

When "47: ACC time" or "48: DEC time" is used, it must be used together with P16.73.

Function code	Name	Description	Setting
P16.73	Communication set	2: PROFINET/EtherNet IP	2
F10.73	ACC/DEC time selection	communication	2

When "49: Function code mapping" is selected, it must be used together with P14.48-P14.59. The

usage method is similar to that in the short description of CANopen/PROFIBUS DP communication PZD.

Sent parameters

Function code	Name	Description
P16.43	Sent PZD2	
P16.44	Sent PZD3	
P16.45	Sent PZD4	
P16.46	Sent PZD5	0: Invalid
P16.47	Sent PZD6	OF. Chattan would 2
P16.48	Sent PZD7	25: Status word 2
P16.49	Sent PZD8	67: Function code mapping (PZD2–PZD12 correspond
P16.50	Cont DZD0	to P14.60–P14.70)
P16.51	Sent PZD10	
P16.52	Sent PZD11	
P16.53	Sent PZD12	

When "25: Function code mapping" is selected, the bit information and usage method are similar to that in the short description of CANopen/PROFIBUS DP communication PZD.

When "67: Function code mapping" is selected, it must be used together with P14.48, P14.48–P14.70. The usage method is similar to that in the short description of CANopen/PROFIBUS DP communication PZD.

Appendix A Expansion card

A.1 Model definition

EC-PG 5 02-05 B 1 2 3 4 5 6

Symbol	Field description	Example
1)	Product category	EC: Expansion card
2	Board card category	IC: IoT card IO: IO expansion card PG: PG card PS: Power supply card TX: communication expansion card
3	Technology version	Indicates the generation of a technical version by using odd numbers, for example, 1, 3, 5, and 7 indicate the 1st, 2nd, 3rd and 4th generations of the technical version.
4	Distinguishing code	02: Sine/Cosine PG card + pulse direction setting + frequency-divided output 03: UVW PG interface + pulse direction setting + frequency-divided output 04: Resolver PG interface + pulse direction setting + frequency-divided output 05: Incremental PG card + pulse direction setting + frequency-divided output 06: Absolute PG interface + pulse direction setting + frequency-divided output 07: Simplified incremental PG card 08: Absolute SSI communication PG card 00: Passive
6	Working power	05: 5V 12: 12–15V 24: 24V Empty: Version A B: Version B C: Version C
6	Expansion card version	1

<u>EC-TX 5 02 B</u>

1 2 3 4 5

Symbol	Field description	Example
1	Product category	EC: Expansion card
2	Board card category	IC: IoT card IO: IO expansion card PG: PG card PS: Power supply card TX: communication expansion card
3	Technology version	Indicates the generation of a technical version by using odd numbers, for example, 1, 3, 5, and 7 indicate the 1st, 2nd, 3rd and 4th generations of the technical version.
4	Distinguishing code	02: Wi-Fi communication card 03: PROFIBUS communication card 04: Ethernet communication card 05: CANopen communication card 06: DeviceNet communication card 07: BACnet communication card 08: EtherCAT communication card 09: PROFINET communication card 10: EtherNet/IP communication card 11: CAN master/slave control communication card
(5)	Expansion card version	Empty: Version A B: Version B C: Version C

EC-IO 5 01-00

1 2 3 4 5

Symbol	Field description	Example
1	Product	EC: Expansion card
	category	LC. Expansion card
2	Board card	IC: IoT card

Symbol	Field description	Example
	category	IO: IO expansion card PG: PG card
		PS: Power supply card TX: communication expansion card
3	Technology version	Indicates the generation of a technical version by using odd numbers, for example, 1, 3, 5, and 7 indicate the 1st, 2nd, 3rd and 4th generations of the technical version.
4		01: Multiple-function I/O extension card (4 digital inputs, 1 digital output, 1 analog input, 1 analog output, and 2 relay outputs)
	Distinguishing code	02: Digital I/O expansion card (four digital inputs, two relay outputs, one PT100 output, and one PT1000 output)
		03: Analog I/O card
		04: Reserved 1
		05: Reserved 2
5	Special	/
	requirement	

EC-IC 5 02-2 ① ② ③ ④ ⑤

Symbol	Field description	Example
1)	Product category	EC: Expansion card
2	Board card category	IC: IoT card IO: IO expansion card PG: PG card PS: Power supply card TX: communication expansion card
3	Technology version	Indicates the generation of a technical version by using odd numbers, for example, 1, 3, 5, and 7 indicate the 1st, 2nd, 3rd and 4th generations of the technical version.
4	Distinguishing code	01: GPRS card 02: 4G card
(5)	Antenna type	1: Built in

Symbol	Field description	Example
		2: External

EC-PS 5 01-24 ① ② ③ ④ ⑤

Symbol	Field description	Example
1)	Product category	EC: Expansion card
2	Board card category	IC: IoT card IO: IO expansion card PG: PG card PS: Power supply card TX: communication expansion card
3	Technology version	Indicates the generation of a technical version by using odd numbers, for example, 1, 3, 5, and 7 indicate the 1st, 2nd, 3rd and 4th generations of the technical version.
4	Product code	01: Provide power supply for the entire control board and keypad
(5)	Working power	24: DC 24V

The following table lists expansion cards that the VFD supports. The expansion cards are optional and need to be purchased separately.

Name	Model	Specifications	Order No.
I/O expansion card 1	EC-IO501-00	 4 digital inputs 1 digital output 1 analog input 1 analog output 2 relay outputs: 1 double-contact output, and 1 single-contact output 	11023–00083
I/O expansion card 2	EC-IO502-00	4 digital inputs One PT100 One PT1000 2 relay outputs: single-contact NO Note: The card is standard configuration only for 7.5kW and higher models.	11023–00119
WIFI communicati on card	EC-TX502-1/ EC-TX502-2	Meeting requirements of IEEE802.11b/g/n With INVT's mobile phone APP, you can monitor the VFD locally or remotely through WIFI The maximum communication distance in open environments is 30m EC-TX502-1 with a built-in antenna, applicable to molded case machines EC-TX502-2 with an external sucker antenna, applicable to sheet metal machines	11023-00101/ 11023–00102
PROFIBUS- DP communicati on card	EC-TX503D	Supporting the PROFIBUS-DP protocol	11023–00080
Ethernet communicati on card	EC-TX504	Supporting Ethernet communication with INVT's internal protocol Can be used in combination with INVT's host controller monitoring software INVT Workshop	11023–00081
CANopen/ CAN master/slave communicati	EC-TX505D	Based on the CAN2.0A physical layer Supporting the CANopen protocol Adopting INVT's master-slave control proprietary protocol	11023–00164

Name	Model	Specifications	Order No.
on card			
EtherCAT communicati on card	EC-TX508	Supporting the EtherCAT COE 402 protocol and automatic network address configuration Supporting the PDO and SDO service and supporting the use of SDO to read VFD function codes Not supporting EtherCAT synchronization cycle	11023–00120
PROFINET communicati on card	EC-TX509C	Supporting the PROFINET protocol	11023–00149
EtherNet IP communicati on card	EC-TX510	Supporting the EtherNet IP protocol Equipped with two EtherNet IP ports, supporting 10/100M half/full duplex operating	11023–00107
CAN-NET two-in-one communicati on card	EC-TX511B	Supporting Ethernet communication with INVT's internal protocol Can be used in combination with INVT's host controller monitoring software INVT Workshop Based on the CAN2.0A physical layer; supporting the CANopen protocol	11023–00124
Modbus TCP communicati on card	EC-TX515	Supporting the Modbus TCP protocol and Modbus TCP slave nodes Equipped with two Modbus TCP ports, supporting 10/100M half/full duplex operating	11023–00125
Sin/Cos PG card	EC-PG502	 Applicable to Sin/Cos encoders with or without CD signals Supporting A, B, Z frequency-divided output Supporting pulse train reference input 	11023–00109
Incremental PG card with UVW	EC-PG503-05	 Applicable to differential encoders of 5V Supporting A, B, and Z orthogonal input Supporting pulse input of phase U, V, and W Supporting the frequency-divided output 	11023–00085

Name	Model	Specifications	Order No.
		of A, B, and Z	
		Supporting pulse train reference input	
	EC-PG504-00	Applicable to resolver encoders	
Resolver PG		Supporting frequency-divided output of	11023–00086
card		resolver-simulated A, B, and Z	
		Supporting pulse train reference input	
	EC-PG505-12	Applicable to OC encoders of 5V or 12V	
Multi-functio		 Applicable to push-pull encoders of 5V or 12V 	
n		Applicable to differential encoders of 5V	
incremental		 Supporting A, B, and Z orthogonal input 	11023–00087
PG card		Supporting the frequency-divided output	
		of A, B, and Z	
		Supporting pulse train reference input	
0: 1:0: 1	EC-PG507-12B	Applicable to OC encoders of 5V or 12V	
Simplified		Applicable to push-pull encoders of 5V or	17001–05975
incremental PG card		12V	
PG card		Applicable to differential encoders of 5V	
24V		Applicable to OC encoders of 24V	
simplified	EC-PG507-24	Applicable to OC encoders of 24V Applicable to push-pull encoders of 24V	11023–00121
incremental	LO-F G307-24	Applicable to passi-pail encoders of 24V Applicable to differential encoders of 24V	11023-00121
PG card		Applicable to differential efficuers of 24v	
Absolute		SSI signal, differential input of 5V	11023–00177
encoder SSI	EC-PG508-05B	Applicable to encoders of 24V or 5V	
communicati	201 0000 002	Pulse reference supporting 5V differential,	11020 00177
on PG card		24V push-pull, and OC encoders	
4G		Supporting standard RS485 interfaces	11095–00009
expansion	EC-IC502-2	Supporting 4G communication	
card			
24V power	EC-PS501-24	Input voltage range: DC18–30V(Rated	
supply		24VDC)/2A	
expansion		Three channels of output voltage: +5V/1A	11023–00135
card		(±5%), +15V/0.2A (±10%), -15V/0.2A	
		(±10%)	

I/O expansion card 1 EC-IO501-00

I/O expansion card 2 EC-IO502-00

WIFI communication card EC-TX502

PROFIBUS-DP communication card EC-TX503D

Ethernet communication card EC-TX504

CANopen/CAN master/slave control communication card EC-TX505D

PROFINET communication card EC-TX509C

CAN-NET two-in-one communication card EC-TX511B

EtherCAT communication card EC-TX508

EtherNet IP/Modbus TCP communication card EC-TX510/515

Sin/Cos PG card EC-PG502

Incremental PG card with UVW

Resolver PG card EC-PG504-00

Multifunction incremental PG card EC-PG505-12

Simplified incremental PG card EC-PG507-12B

24V simplified incremental PG card EC-PG507-24

4G expansion card EC-IC502-2

24V power supply expansion card EC-PS501-24

A.2 Dimensions and installation

All expansion cards are of the same dimensions (108x39mm) and can be installed in the same way.

Comply with the following rules when installing or removing an expansion card:

- 1. Ensure that no power is applied before installing the extension card.
- 2. The expansion card can be installed in any one of the SLOT1, SLOT1 and SLOT2 card slots.
- 3. The VFDs of 5.5 kW and lower models can be configured with two expansion cards at the same time, and the VFDs of 7.5 kW and higher models can be configured with three expansion cards.
- 4. If interference occurs on the external wires after the expansion card is installed, change the installation slot flexibly to facilitate the wiring. For example, the connector of the connection cable of the DP card is large, and you are recommended to install the card at SLOT1.
- 5. To ensure high anti-interference capability in closed-loop control, you need to use a shielded cable as the encoder cable and ground the two ends of the cable. That is, connect the motor side shield layer to the motor housing, and connect the PG card side shield layer to the PE terminal.

The following figure shows the installation diagram and a VFD with expansion cards installed.

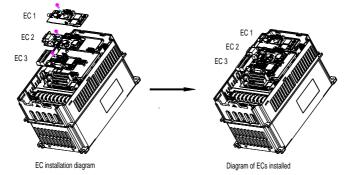


Figure A-1 VFD of 7.5 kW or higher with expansion cards installed

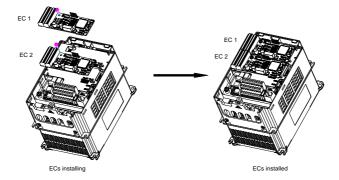


Figure A-2 VFD of 5.5kW or lower with expansion cards installed

Expansion card installation procedure:

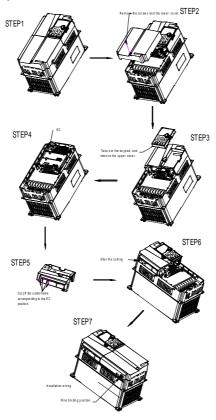


Figure A-3 Expansion card installation procedure

A.3 Wiring

Ground a shielded cable as shown in Figure A-4 Expansion card grounding.

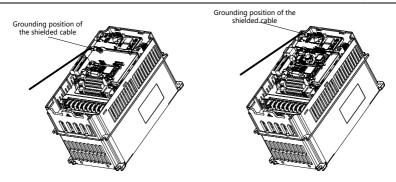
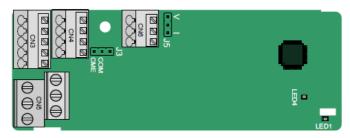



Figure A-4 Expansion card grounding

A.4 IO card (EC-IO501-00)

The terminals are arranged as follows:

CME and COM are shorted through J3 before delivery, and J5 is the jumper for selecting the output type (voltage or current) of AO2.

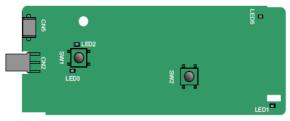
	Al3		AO2			GND				
СОМ	CME	Y2	S5			RO3A	A ROS	3B	RO3C	1
PW	+24V	S6	S7	S8			RO4A)4C

Indicator definition:

Indicator	Definition	Function
LED1	Status indicator	On: The expansion card is connecting with the control board. Blinks periodically (cycle: 1s; on: 0.5s; off: 0.5s): The expansion card is connected with the control board. Off: The expansion card is disconnected from the control board.
LED4	Power indicator	On: The I/O expansion card is powered on by the

Indicator	Definition	Function
		control board.

EC-IO501-00 can be applied to scenarios where the I/O interface of VFD is not sufficient to meet the demand. It can provide four digital inputs, one digital output, one analog input, one analog output, and two relay outputs. It is user-friendly, providing relay outputs through European-type screw terminals and other inputs and outputs through spring terminals.

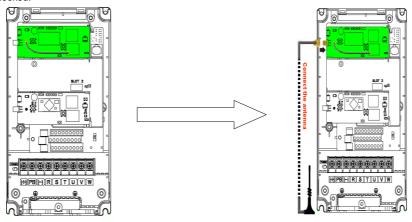

EC-IO501-00 terminal function description

Category	Terminal symbol	Terminal name	Description
Power supply	PW	External power	External power input terminal for digital input circuits Voltage range: 12–30V PW and +24V have been short connected before delivery.
Analog Input and output	Al3—GND	Analog input 1	 Input range: For Al3, 0–10V or 0–20mA Input impedance: 20kΩ for voltage input or 250Ω for current input Whether voltage or current is used for input is set through the corresponding function code. Resolution: 5mV when 10V corresponds to 50Hz Error: ±0.5% when input is above 5V or 10mA at 25°C
	AO2—GND	Analog output 1	 Output range: 0–10V or 0–20mA Whether voltage or current is used for output is set through the jumper J5 Error: ±0.5% when output is above 5V or 10mA at 25°C
	S5—COM	Digital input 1	1. Internal impedance: 6.6kΩ
Digital Input and output	S6—COM	Digital input 2	2. Support for external power supply
	S7—COM	Digital input 3	input: (-20%) 24–48 VDC (+10%) or (-10%) 24–48 VAC (+10%) 3. Bi-direction input terminal 4. Max. input frequency: 1kHz

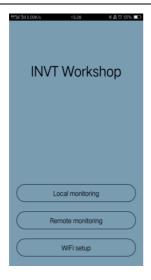
Category	Terminal symbol	Terminal name	Description
	S8—COM	Digital input 4	S8 supports PTC input, while PTC acts at $2.5 k\Omega$. It supports internal pull-up of +24V, and it supports the input of only dry contacts sharing COM. The max. input frequency is 50Hz.
	Y2—CME Digital of		Switch capacity: 50mA/30V Output frequency range: 0–1kHz The terminals CME and COM are shorted through J3 before delivery.
	RO3A	NO contact of relay 3	
	RO3B	NC contact of relay 3	1. Contact capacity: 3A/AC250V.
Relay output	RO3C	Common contact of relay 3	1A/DC30V
	RO4A	NO contact of relay 4	Cannot be used as high frequency digital output
	RO4C	Common contact of relay 4	digital output.

A.5 Communication cards

A.5.1 WIFI communication card (EC-TX502)

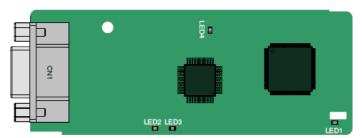

Definition of indicators and function keys:

Indicator	Definition	Function
LED3	WIFI status indicator	On: The expansion card is connecting with the control board. Blinks periodically (cycle: 1s; on: 0.5s; off: 0.5s): The expansion card is connected with the control board. Off: The expansion card is disconnected from the control board.
LED5	Power indicator	This indicator is on after the control board feeds power to the communication card.


Indicator	Definition	Function
SW1	WIFI factory reset	It is used to restore the expansion card to default values
3001	button	and return to the local monitoring mode.
CWO	WIFI hardware reset	It is used to rectart the correction and
SW2	button	It is used to restart the expansion card.

The wireless communication card is especially useful for scenarios where you cannot directly use the keypad to operate the VFD due to the restriction of the installation space. With a mobile phone APP, you can operate the VFD in a maximum distance of 30m. You can choose a PCB antenna or an external sucker antenna. If the VFD is located in an open space and is a molded case machine, you can use a built-in PCB antenna; and if it is a sheetmetal machine and located in a metal cabinet, you need to use an external sucker antenna.

When installing a sucker antenna, install a wireless communication card on the VFD first, and then lead the SMA connector of the sucker antenna into the VFD and screw it to CN2, as shown in the following figure. Place the antenna base on the chassis and expose the upper part. Try to keep it unblocked.



The wireless communication card must be used with the INVT VFD APP. For details, refer to the wireless communication card manual provided with the extension card. The main interface is shown as follows.



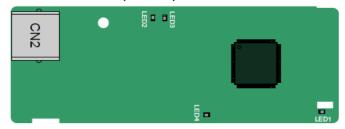
A.5.2 PROFIBUS-DP communication card (EC-TX503D)

CN1 is a 9-pin D-type connector, as shown in the following figure.

Coi	nnector pin	Description
1	/	Unused
2	/	Unused
3	B-Line	Data+ (twisted pair 1)
4	RTS	Request sending
5	GND_BUS	Isolation ground

Con	nector pin	Description
6	+5V BUS	Isolated power supply of 5 V DC
7	/	Unused
8	A-Line	Data- (twisted pair 2)
9	/	Unused
Housing	SHLD	PROFIBUS cable shielding line

+5V and GND_BUS are bus terminators. Some devices, such as the optical transceiver (RS485), may need to obtain power through these pins.

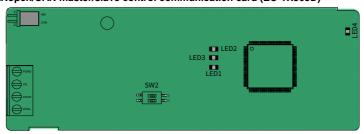

Some devices use RTS to determine the sending and receiving directions. In normal applications, only A-Line, B-Line, and the shield layer need to be used.

Indicator definition:

Indicator	Definition	Function
		On: The expansion card is connecting with the control board.
LED1	Status	Blinks periodically (cycle: 1s; on: 0.5s; off: 0.5s): The expansion card
LEDI	indicator	is connected with the control board.
		Off: The expansion card is disconnected from the control board.
	Online	On: The communication card is online and data exchange can be
LED2	indicator	performed.
	indicator	Off: The communication card is not in the online state.
		On: The communication card is offline and data exchange cannot be
		performed.
		Blinks: The communication card is not in the offline state.
		Blinks at the frequency of 1 Hz: A configuration error occurs: The
		length of the user parameter data set during the initialization of the
		communication card is different from that during the network
LED3	Offline/Fault	configuration.
LEDS	indicator	Blinks at the frequency of 2 Hz: User parameter data is incorrect.
		The length or content of the user parameter data set during the
		initialization of the communication card is different from that during
		the network configuration.
		Blinks at the frequency of 4 Hz: An error occurs in the ASIC
		initialization of PROFIBUS communication.
		Off: The diagnosis function is disabled.
LED4	Power	This indicator is on after the control board feeds power to the
LED4	indicator	communication card.

For details, see the Goodrive350 series VFD communication card manual.

A.5.3 Ethernet communication card (EC-TX504)



EC-TX504 uses standard RJ45 terminals.

Indicator definition:

Indicator	Definition	Function
LED1	Status indicator	On: The expansion card is connecting with the control board. Blinks periodically (cycle: 1s; on: 0.5s; off: 0.5s): The expansion card is connected with the control board. Off: The expansion card is disconnected from the control board.
LED2	Network connection status indicator	On: The physical connection to the upper computer is normal. Off: The upper computer is disconnected.
LED3	Network communication status indicator	On: There is data exchange with the upper computer. Off: There is no data exchange with the upper computer.
LED4	Power indicator	This indicator is on after the control board feeds power to the communication card.

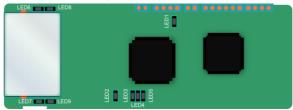
A.5.4 CANopen/CAN master/slave control communication card (EC-TX505D)

EC-TX505D expansion card includes:

Symbol	Name	Description
PGND	Isolation ground	Isolation ground
PE	Shielded cable	CAN bus shielding
CANH	CAN positive	CAN bus high level signal

Symbol	Name	Description
	input	
CANL	CAN negative input	CAN bus low level signal
405	RS485 terminal	No terminal resistor is connected between 485+ and 485
485	resistor switch	A 120 Ω terminal resistor is connected between 485+ and 485
		No terminal resistor is connected between CAN_H and
CAN	CAN terminal	CAN_L.
	resistor switch	A 120 Ω terminal resistor is connected between CAN_H and
		CAN_L.

Note: For this card, before power-on, set the SW2 switch according to the mapping between protocols and positions.


SW2			
1	2	Protocol type	
OFF	OFF	CANopen	
ON	OFF	CAN master/slave	

Indicator definition:

Indicator	Definition	Function	
		On: The expansion card is connecting with the control board.	
LED1	Status	Blinks periodically (cycle: 1s; on: 0.5s; off: 0.5s): The expansion card	
LEDI	indicator	is connected with the control board.	
		Off: The expansion card is disconnected from the control board.	
		On: The communication card is in the operating state.	
		Blinks periodically (cycle: 0.5s; on: 0.25s; off: 0.25s): The	
1.500	Run	communication card is in the pre-operation state.	
LED2	indicator	Off: A fault occurs; the reset pin of the communication card and the	
		power supply are not properly connected; the expansion card is in a	
		stopped state.	
	- "	On: The CAN controller bus is off; a fault occurs on the VFD;	
LED3	Fault	received frame lost or incorrect.	
	indicator	Off: The communication card is in the working state.	
1.504	Power	On: The expansion card is powered on.	
LED4	indicator	Off: The expansion card is not powered on.	

For details, see the Goodrive350 series VFD communication card manual.

A.5.5 PROFINET communication card (EC-TX509C)

The terminal CN2 adopts standard RJ45 interfaces, which are in the dual design, and the two RJ45 interfaces are not distinguished from each other and can be interchangeably inserted. They are arranged as follows:

Pin	Name	Description
1	TX+	Transmit Data+
2	TX-	Transmit Data-
3	RX+	Receive Data+
4	n/c	Not connected
5	n/c	Not connected
6	RX-	Receive Data-
7	n/c	Not connected
8	n/c	Not connected

Indicator definition:

The PROFINET communication card has 9 indicators, among which LED1 is the power indicator, LED2–5 are the communication status indicators of the communication card, and LED6–9 are the status indicators of the network port.

Indicator	Color	Function
LED1	Green	3.3V power indicator
LED2 (Bus status indicator)	Red	On: No network connection Blinks: The connection to the PROFINET controller through a network cable is OK, but the communication is not established. Off: Communication with the PROFINET controller has been established.
LED3 (System fault indicator)	Green	On: PROFINET diagnosis exists. Off: No PROFINET diagnosis.
LED4 (Slave ready indicator)	Green	On: TPS-1 protocol stack has started. Blinks: TPS-1 waits for MCU initialization. Off: TPS-1 protocol stack does not start.

Indicator	Color	Function
LED5 (Maintenance status indicator)	Green	Manufacturer-specific, depending on the characteristics of the device
LED6/7 (Network port status indicator)	Green	On: The PROFINET communication card and PC/PLC have been connected through a network cable. Off: The connection between the PROFINET communication card and PC/PLC has not been established.
LED8/9 (Network port communication indicator)	Green	On: The PROFINET communication card and PC/PLC are communicating. Off: The PROFINET communication card and PC/PLC have no communication yet.

Electrical connection: The PROFINET communication card adopts standard RJ45 interfaces, which can be used in a linear network topology and a star network topology, as shown in Figure A-5 and Figure A-6.

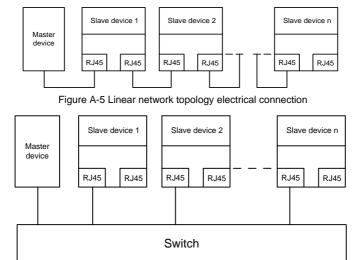
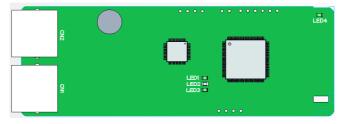



Figure A-6 Star network topology electrical connection

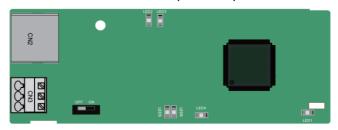
Note: For the star network topology, you need to prepare PROFINET switches.

A.5.6 EtherNet IP communication card (EC-TX510)

The communication port adopts standard dual RJ45 interfaces, and the two RJ45 interfaces are not distinguished from each other and can be interchangeably inserted.

Interface functions

Pin	Function	Description
1	TX+	Transmit Data+
2	TX-	Transmit Data-
3	RX+	Receive Data+
4	n/c	Not connected
5	n/c	Not connected
6	RX-	Receive Data-
7	n/c	Not connected
8	n/c	Not connected


The EtherNet IP communication card provides four LED indicators and four net port indicators to indicate its states.

Indicator	Color	Function
	Green	On: The card is shaking hands with the VFD.
LED1		Blinks (1Hz): The card and VFD communicate normally.
		Off: The card and VFD communicate improperly.
LEDO		On: The communication between the card and the PLC is
LED2	Green	online and data exchange is allowed.
(Bus status		Blinks (1Hz): IP address conflict between the card and PLC.
indicator)		Off: The communication between the card and PLC is offline.
		On: Failed to set up I/O between the card and PLC.
LED3		Blinks (1Hz): Incorrect PLC configuration.
(System fault	Red	Blinks (2Hz): The card failed to send data to the PLC.
indicator)		Blinks (4Hz): The connection between the card and PLC timed
		out.

Indicator	Color	Function	
		Off: No fault	
LED4	Red	3.3V power indicator	
Net port		On: Ethernet connection is successful.	
indicator	Yellow	Off: Ethernet connection is not established.	
(Link indicator)			
Net port		On: Data exchange is ongoing.	
indicator	Green	On: Data exchange is ongoing.	
(ACK indicator)			

For details, see the Goodrive350 series VFD communication card manual.

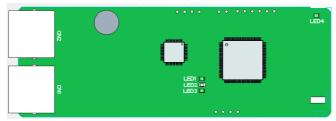
A.5.7 CAN-NET two-in-one communication card (EC-TX511B)

The EC-TX511B communication card is user-friendly, adopting spring-loaded terminals. CN2 uses standard RJ45 terminals.

CN3 terminal function:

3-pin spring-loaded terminal	Pin	Function	Description
1 2 3	1	CANH	CANopen bus high level signal
	2	CANG	CANopen bus shielding
	3	CANL	CANopen bus low level signal

Terminal resistor switch function description:


Terminal resistor switch	Position value	Function	Description
	Left	OFF	No terminal resistor is connected between CAN_H and CAN_L.
	Right	ON	A 120 Ω terminal resistor is connected between CAN H and CAN L.

Indicator definition:

Indicator	Definition	Function
LED1	Status indicator	On: The expansion card is connecting with the control board. Blinks periodically (cycle: 1s; on: 0.5s; off: 0.5s): The expansion card is connected with the control board. Off: The expansion card is disconnected from the control board.
LED2	Network connection status indicator	On: The physical connection to the upper computer is normal. Off: The upper computer is disconnected.
LED3	Network communication status indicator	On: There is data exchange with the upper computer. Off: There is no data exchange with the upper computer.
LED4	Power indicator	This indicator is on after the control board feeds power to the communication card.
LED5	Run indicator	On: The communication card is in the operating state. Blinking: The communication card is in the pre-operation state. Blinking once: The communication card is in the stopped state. Off: A fault occurs. Check whether the reset pin of the communication card and the power supply are properly connected.
LED6	Error indicator	On: The CAN controller bus is off or the VFD has a fault. Blinking: The address setting is incorrect. Blinking once: A received frame is missed or an error occurs during frame receiving. Off: The communication card is in the working state.

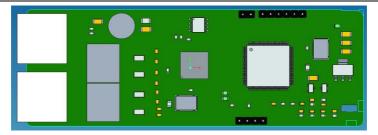
For details, see the Goodrive350 series VFD communication card manual.

A.5.8 Modbus TCP communication card (EC-TX515)

The communication port adopts standard dual RJ45 interfaces, and the two RJ45 interfaces are not distinguished from each other and can be interchangeably inserted.

Interface functions

Pin	Function	Description
1	TX+	Transmit Data+
2	TX-	Transmit Data-
3	RX+	Receive Data+
4	n/c	Not connected
5	n/c	Not connected
6	RX-	Receive Data-
7	n/c	Not connected
8	n/c	Not connected


The communication card provides four LED indicators and four net port indicators to indicate its states.

Indicator	Color	Function
		On: The card is shaking hands with the VFD.
LED1	Green	Blinks (1Hz): The card and VFD communicate normally.
		Off: The card and VFD communicate improperly.
LED2		On: The communication between the card and the PLC is
	Green	online and data exchange is allowed.
(Bus status	Green	Blinks (1Hz): IP address conflict between the card and PLC.
indicator)		Off: The communication between the card and PLC is offline.
		On: The card has no valid data received.
LED3		Blinks (1Hz): The message function code is not used or
(System fault	Red	defined.
indicator)		Blinks (8Hz): Message address error.
		Off: No fault
LED4	Red	This indicator is on after the control board feeds power to the
(Power indicator)	Reu	communication card.
Net port indicator	Yellow	On: Ethernet connection is successful.
(Link indicator)	Yellow	Off: Ethernet connection is not established.
Net port indicator	0	On: Data exchange is ongoing.
(ACK indicator)	Green	On: Data exchange is ongoing.

For details, see the Goodrive350 series VFD communication card manual.

A.5.9 EtherCAT communication card (EC-TX508)

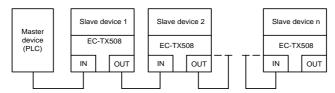
EC-TX508 is defined as an EtherCAT slave communication card, which can be used on the product.

- 1. Supported functions
- ➤ EtherCAT COE 402 protocol Automatic network address configuration
- Automatic network address configuration
- 2. Supported services
- PDO service
- SDO service
- Manufacturer-defined object dictionary
- Use of SDO to read VFD function codes
- 3. Not supporting EtherCAT synchronization cycle
- 4. Communication port

Standard RJ45 ports are used in EtherCAT communication. The communication card provides two RJ45 ports with transmission direction defined. The following figure shows the ports. IN (indicating input) and OUT (indicating output) are EtherCAT wiring network ports.

Interface functions:

Pin	Name	Description
1	TX+	Transmit Data+
2	TX-	Transmit Data-
3	RX+	Receive Data+
4	n/c	Not connected
5	n/c	Not connected
6	RX-	Receive Data-
7	n/c	Not connected
8	n/c	Not connected


5. Status indicators

The EtherCAT communication card provides five LED indicators and four net port indicators to indicate its states.

Indicator	Color	Function
RUN (EtherCAT run status)	Green	Steady on: OP state Blinking periodically (off for 0.2s; on for 0.2s): Pre-OP state Blinking periodically (off for 1s; on for 0.2s): Safe-OP state Steady off: Init state
ALM (EtherCAT fault status)	Red	Steady on: OP fault state Blinking periodically (off for 0.2s; on for 0.2s): Init, Pre-OP 故 fault state Blinking periodically (off for 1s; on for 0.2s): Safe-OP fault status Steady off: No fault
PWR	Red	3.3V power indicator
N	Yellow	On: Ethernet connection established. Off: Ethernet connection is not established.
Net port indicator (IN)	Green	On: Linkage without activity Blinking: Linkage with activity Off: No linkage
Not part indicator	Yellow	On: Ethernet connection established. Off: Ethernet connection is not established.
Net port indicator (OUT)	Green	On: Linkage without activity Blinking: Linkage with activity Off: No linkage

6. Electrical connection

An EtherCAT network often consists of a master (such as PLC) and multiple slaves (such as drives or bus expansion terminals). Each EtherCAT slave has two standard Ethernet interfaces. The following figure shows the electrical connection.

- 7. EtherCAT communication parameter settings in common control mode
- A. Parameter addresses for VFD data receiving

Parameters when the standard speed mode (3 is written to 0x6060) is used:

- > Speed control ACC time: 0x6083, 32-bit data, 3 decimal places, 0.001s
- > Speed control DEC time: 0x6084, 32-bit data, 3 decimal places, 0.001s

Set frequency: 0x60FF, set rotation speed value, 32-bit data, unit: 1RPM

Note: You need to set P16.79 ones place to 1, and set P00.06=13.

Parameters when the standard positioning mode (1 is written to 0x6060) is used:

Positioning speed: 0x6081, set rotation speed value, 32-bit data, unit: 1RPM

> Position reference: 0x607A, 32-bit data

Positioning ACC time: 0x6083, 32-bit data, 3 decimal places, 0.001s

Positioning DEC time: 0x6084, 32-bit data, 3 decimal places, 0.001s

Note: You need to set P21.18=6.

A. Parameter addresses for VFD data sending

Speed feedback: 0x606C, 32-bit data, Unit 1RPM

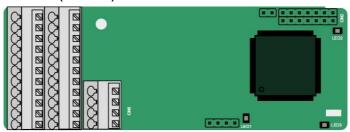
Terminal output status: 0x60FD, 32-bit data, low 16 bits indicate input terminal status, while high 16 bits indicate output terminal status. The mapping between bits and I/O ports is as follows.

BIT29	BIT28	BIT27	BIT26	BIT25	BIT24	BIT23
1	RO4	RO3	/	/	Y2	/
BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
/	/	/	RO2	RO1	HDO	Y1

BIT11	BIT10	BIT9	BIT8	BIT7	BIT6
S8	S7	S6	S5	/	/
BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
HDIB	HDIA	S4	S3	S2	S1

- Output current: 0x6078, 16-bit data, 1 decimal place, unit: 0.1%, relative to the motor rated current
- Motor encoder pulse count: 0x6064, 32-bit data
- SSI position reference: 0x60BA, 32-bit data
- Present motor control mode: 0x6061, 8-bit data, display value (=0, zero mode; =1, standard positioning mode; =3, standard speed mode)

Note: You need to set P16.79 hundreds place to 3.


In addition, if you need to distinguish between standard speed mode and standard positioning mode, use different ACC/DEC time reference addresses. You can set P16.81 tens place to 1. At this time, the ACC/DEC parameter addresses in standard speed mode will be automatically switched, while they will not be changed in standard positioning mode.

- Speed control ACC time: 0x6071, 16-bit data, 3 decimal places, 0.001s
- Speed control DEC time: 0x6072, 16-bit data, 3 decimal places, 0.001s

For details, see the Goodrive350 series VFD communication card manual.

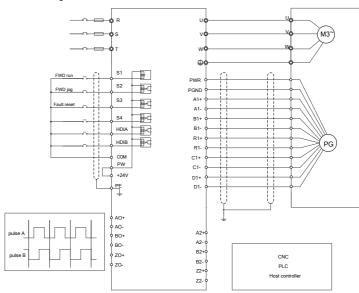
A.6 PG expansion cards

A.6.1 Sin/Cos PG card (EC-PG502)

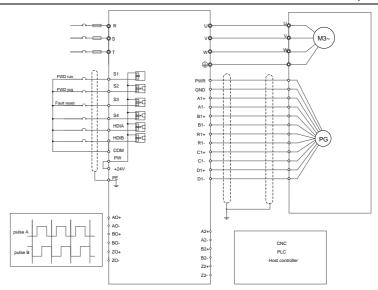
The terminals are arranged as follows:

							C1+	C1-	D1+	D1-
PE	AO+	BO+	ZO+	A1+	B1+	R1+	A2+	B2+	Z2+	PWR
GND	AO-	во-	ZO-	A1-	B1-	R1-	A2-	B2-	Z2-	GND

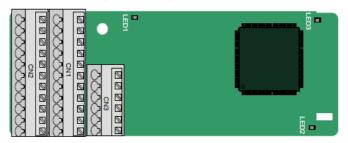
Indicator definition:


Indicator	Definition	Function
	Disconnection	On: Encoder signals are normal.
LED1	indicator	Blinking: C1 or D1 of the encoder is disconnected.
	indicator	Off: A1 or B1 of the encoder is disconnected.
LED2	Power	This indicator is on after the control board feeds power to the
LLDZ	indicator	expansion card.
		On: The expansion card is connecting with the control board.
LED3	Status	Blinks periodically (cycle: 1s; on: 0.5s; off: 0.5s): The expansion
	indicator	card is connected with the control board.
		Off: The expansion card is disconnected from the control board.

EC-PG502 terminal function:


Signal	Port	Description
PE	Grounding terminal	Connected to the ground to enhance the anti-interference performance
PWR		1. Voltage: 5V ± 5%
GND	Encoder power	2. Max. output current: 150mA
A1+		
A1-	Encoder interface	Supporting Sin/Cos encoders (with CD signal or without CD
B1+		signal)
B1-		2. SINA/SINB/SINC/SIND 0.6–1.2Vpp; SINR 0.2–0.85Vpp
R1+		3. Max. frequency response of A/B signals: 200kHz
R1-		Max. frequency response of C/D signals: 1kHz

Signal	Port	Description			
C1+					
C1-					
D1+					
D1-					
A2+					
A2-					
B2+	Pulse reference	Supporting 5V differential signal			
B2-		2. Response frequency: 200 kHz			
Z2+					
Z2-					
AO+					
AO-		A Differential autout of EV			
BO+	Frequency-divided	Differential output of 5V Supporting frequency division of 2 ^N , which can be set			
ВО-	output	through P20.16 or P24.16 Max. output frequency: 200 kHz			
ZO+					
ZO-					


The following figure shows the external wiring of the PG card when it is used in combination with an encoder without CD signals.

The following figure shows the external wiring of the PG card when it is used in combination with an encoder with CD signals.

A.6.2 UVW incremental PG card (EC-PG503-05)

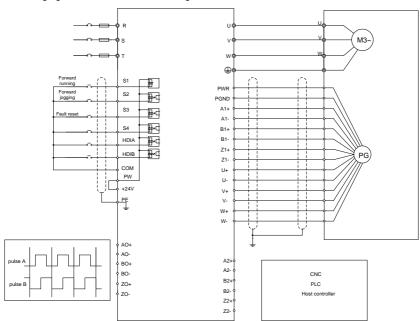
The terminals are arranged as follows:

					A2+	A2-	B2+	B2-	Z2+	Z2-
PE	AO+	BO+	ZO+	A1+	B1+	Z1+	U+	V+	W+	PWR
GND	AO-	во-	ZO-	A1-	B1-	Z1-	U-	V-	W-	PGND

Indicator definition:

Indicator	Definition	Function
LED1	Disconnection	This indicator blinks only if A1 or B1 signal is disconnected
LEDI	indicator	during encoder rotating; and it is on in other cases.
		On: The expansion card is connecting with the control board.
LED2	Status indicator	Blinking periodically (on: 0.5s; off: 0.5s): The expansion card
		is connected with the control board.

Indicator	Definition	Function				
		Off: The expansion card is disconnected from the control				
		board.				
LEDO	Dower in disptor	This indicator is on after the control board feeds power to the				
LED3	Power indicator	expansion card.				


The EC-PG503-05 expansion card supports the input of absolute position signals, integrating the advantages of absolute and incremental encoders and adopts spring-loaded terminals for easy use.

EC-PG503-05 terminal function description:

Signal	Port	Description		
PWR	Encoder newer	Voltage: 5 V±5%		
PGND	Encoder power	Max. current: 200 mA		
A1+				
A1-				
B1+	For a description	Differential incremental PG interface of 5 V		
B1-	Encoder interface	2. Response frequency: 400 kHz		
Z1+				
Z1-				
A2+				
A2-				
B2+	Dula a antica a	1. Differential input of 5 V		
B2-	Pulse setting	2. Response frequency: 200 kHz		
Z2+				
Z2-				
AO+		Differential output of 5 V		
AO-	Frequency-divided output	2. Supporting frequency division of 1–255, which		
BO+		can be set through P20.16 or P24.16		

Signal	Port	Description
во-		
ZO+		
ZO-		
U+		
U-	UVW encoder interface	
V+		Absolute position (UVW information) of the hybrid encoder, differential input of 5 V
V-		Response frequency: 40 kHz
W+		
W-		

The following figure shows the external wiring when EC-PG503-05 is used.

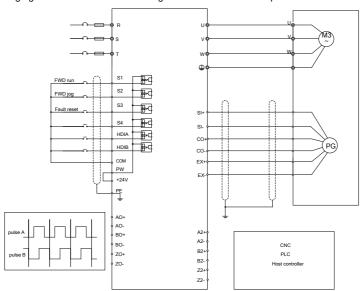
A.6.3 Resolver PG card (EC-PG504-00)

The terminals are arranged as follows:

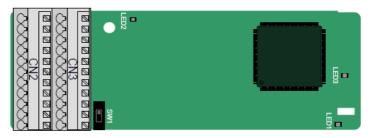
PE	AO+	BO+	ZO+	EX+	SI+	CO+	A2+	B2+	Z2+	PWR
GND	AO-	во-	ZO-	EX-	SI-	CO-	A2-	B2-	Z2-	GND

Indicator definition:

Indicator	Definition	Function			
LED1	Status indicator	On: The expansion card is connecting with the control board. Blinks periodically (cycle: 1s; on: 0.5s; off: 0.5s): The expansion card is connected with the control board. Off: The expansion card is disconnected from the control board.			
LED2	Disconnection indicator	On: Encoder signals are normal. Blinking: Encoder signals are not stable. Off: The encoder is disconnected.			
LED3	Power indicator	This indicator is on after the control board feeds power to the expansion card.			


EC-PG504-00 can be used in combination with a resolver of excitation voltage 7Vrms. It is user-friendly, adopting spring-loaded terminals.

EC-PG504-00 terminal function description:


Signal	Port	Description
PE	Grounding	Connected to the ground to enhance the anti-interference
PE	terminal	performance
PWR	Output power	\/-\\ \(\sum_{\text{\color}} \)
GND	supply	Voltage: 5V±5%
SI+		
SI-	Encoder signal	December de describer transferrentian action 0.5
CO+	input	Recommended resolver transformation ratio: 0.5
CO-		

Signal	Port	Description			
EX+	Encoder excitation	Factory setting of excitation: 10kHz			
EX-	signal	2. Supporting resolvers with an excitation voltage of 7Vrms			
A2+					
A2-					
B2+	Dulas rafarras	1. Differential input of 5V			
B2-	Pulse reference	2. Response frequency: 200 kHz			
Z2+					
Z2-					
AO+		Differential output of 5 V			
AO-		2. Frequency-divided output of resolver simulated A1, B1,			
BO+	Frequency-divided	and Z1, which is equal to an incremental PG card of			
ВО-	output	1024pps			
ZO+		3. Supporting frequency division of 2 ^N , which can be set			
70		through P20.16 or P24.16			
ZO-		Max. output frequency: 200kHz			

The following figure shows the external wiring of the EC-PG504-00 expansion card.

A.6.4 Multi-function incremental PG card (EC-PG505-12)

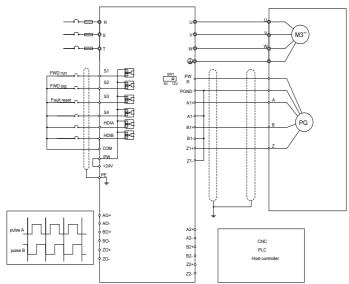
The terminals are arranged as follows:

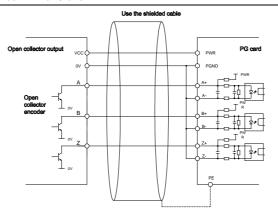
The SW1 switch is used to set the voltage class (5V or 12V) of the power supply of the encoder. The switch can be operated with an auxiliary tool.

PE	AO+	BO+	ZO+	A1+	B1+	Z1+	A2+	B2+	Z2+	PWR
GND	AO-	во-	ZO-	A1-	B1-	Z1-	A2-	B2-	Z2-	PGND

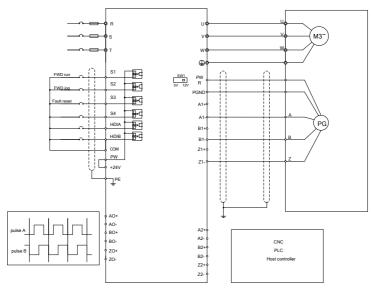
Indicator definition:

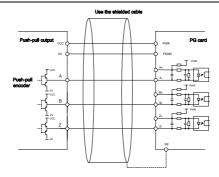
Indicator	Definition	Function
LED1	Signal indicator	On: Other cases Blinking periodically (cycle: 1s; on: 0.5s; off: 0.5s): A1 or B1 signal is disconnected during encoder rotating.
LED2	Power indicator	This indicator is on after the control board feeds power to the expansion card.
LED3	Status indicator	On: The expansion card is connecting with the control board. Blinks periodically (cycle: 1s; on: 0.5s; off: 0.5s): The expansion card is connected with the control board. Off: The expansion card is disconnected from the control board.

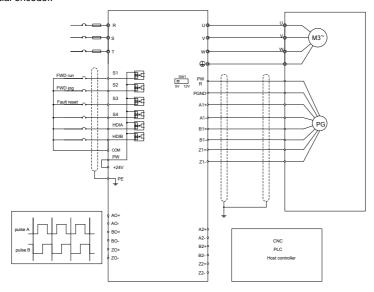

The EC-PG505-12 expansion card can be used in combination with multiple types of incremental encoders through different modes of wiring. It is user-friendly, adopting spring-loaded terminals.

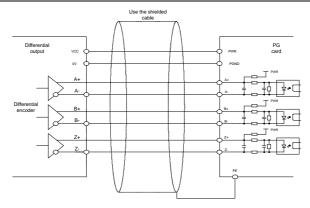

EC-PG505-12 terminal function description:

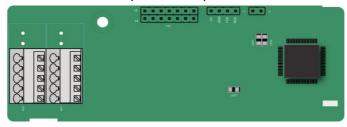
Signal	Port	Description			
Grounding		Connected to the ground to enhance the anti-interference			
PE	terminal	performance			
GND	Ground	nd Ground of PCB internal power			
PWR		Voltage: 5V/12V ± 5%			
	I Encoder power	Max. output: 150 mA			
PGND		Select the voltage class through SW1 based on the voltage class			
		of the used encoder. (PGND is the isolation power ground.)			


Signal	Port	Description				
A1+						
A1-		1. Applicable to 5V/12V push-pull encoders				
B1+	Encoder interface	2. Applicable to 5V/12V OC encoders				
B1-	Encoder interiace	3. Applicable to 5V differential encoders				
Z1+		4. Response frequency: 200 kHz				
Z1-						
A2+	Pulse reference					
A2-						
B2+		Supporting the same signal types as the encoder signal types				
B2-	Fuise reference	2. Response frequency: 200 kHz				
Z2+						
Z2-						
AO+						
AO-		1. Differential output of EV				
BO+	Frequency-divided	Differential output of 5V Supporting frequency division of 1, 255, which can be set				
BO-	output	Supporting frequency division of 1–255, which can be set through P20.16 or P24.16				
ZO+		111100g11 F 20.10 01 F 24.10				
ZO-						


The following figure shows the external wiring when the expansion card is used in combination with an open collector encoder. A pull-up resistor is configured inside the PG card.




The following figure shows the external wiring when the expansion card is used in combination with a push-pull encoder.



The following figure shows the external wiring when the expansion card is used in combination with a differential encoder.

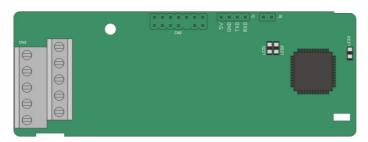
A.6.5 Simplified incremental PG card (EC-PG507-12B)

The terminals are arranged as follows:

The SW1 switch is used to set the voltage class (5V or 12V) of the power supply of the encoder. The switch can be operated with an auxiliary tool.

PE	A1+	B1+	Z1+	PWR
PGND	A1-	B1-	Z1-	PGND

Indicator definition:


Indicator	Definition	Function		
	Status indicator	On: The expansion card is connecting with the control board.		
LED4		Blinks periodically (cycle: 1s; on: 0.5s; off: 0.5s): The expansion		
LED1		card is connected with the control board.		
		Off: The expansion card is disconnected from the control board.		
LED2	Disconnection	On: Encoder pulses are normal.		
	indicator	Off: A1 or B1 of the encoder is disconnected.		
LED3	Power indicator	This indicator is on after the control board feeds power to the		
		expansion card.		

EC-PG507-12B can work in combination with multiple types of incremental encoders through various external wiring modes, which are similar to the wiring modes of EC-PG505-12. EC-PG507-12B

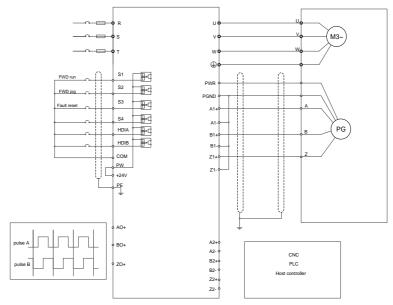
terminal function description:

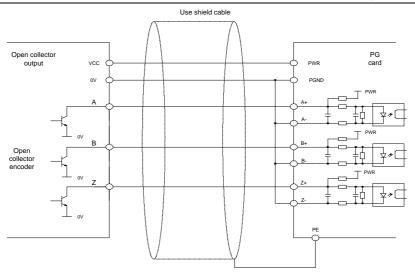
Signal	Port	Description		
PE	Grounding	Connected to the ground to enhance the anti-interference		
PE	terminal	performance		
PWR		Voltage: 5V/12V ± 5%		
	Encoder power	Max. output: 150 mA		
PGND		Select the voltage class through SW1 based on the voltage class		
		of the used encoder. (PGND is the isolation power ground.)		
A1+	Encoder interface			
A1-		1. Applicable to 5V/12V push-pull encoders		
B1+		2. Applicable to 5V/12V OC encoders		
B1-		3. Applicable to 5V differential encoders		
Z1+		4. Response frequency: 400kHz		
Z1-		5. Supporting the encoder cable length of up to 50m		

A.6.6 24V simplified incremental PG card (EC-PG507-24)

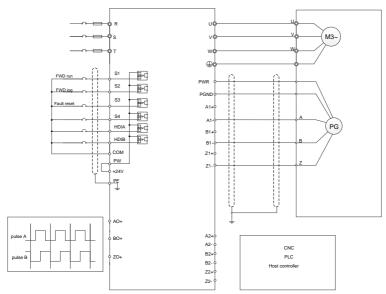
The terminals are arranged as follows:

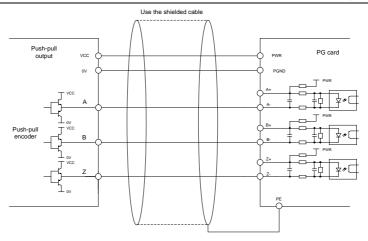
PE	A1+	B1+	Z1+	PWR
PGND	A1-	B1-	Z1-	PGND

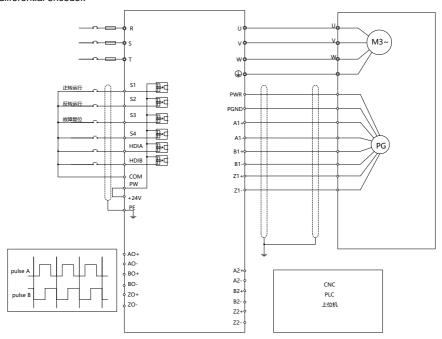

Indicator definition:

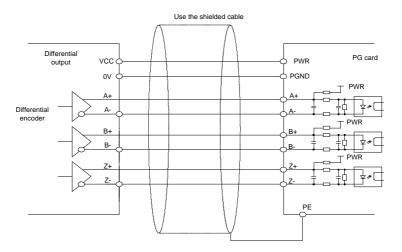

Indicator	Definition	Function		
	Status indicator	On: The expansion card is connecting with the control board.		
LED4		Blinking periodically (cycle: 1s; on: 0.5s; off: 0.5s): The expansion		
LED1		card is connected with the control board.		
		Off: The expansion card is disconnected from the control board.		
LED2	Disconnection	On: Encoder pulses are normal.		
	indicator	Off: A1 or B1 of the encoder is disconnected.		
LED3	Power indicator	This indicator is on after the control board feeds power to the		
		expansion card.		

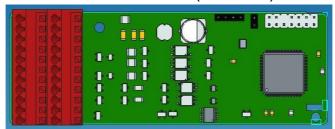
The EC-PG507-24 extension card can be used in combination with multiple types of incremental encoders through different modes of wiring. It is user-friendly, adopting 5.08mm pitch terminals. EC-PG507-24 terminal function description:


Signal	Port	Description
PE	Grounding	Connected to the ground to enhance the anti-interference
PE	terminal	performance
PWR	Encoder power	Voltage: 24V ± 5%
PGND		Max. output current: 150mA (PGND is isolation power ground)
A1+		
A1-	Encoder interface	Applicable to 24V push-pull encoders
B1+		2. Applicable to 24V OC encoders
B1-		Applicable to 24V differential encoders
Z1+		4. Response frequency: 200kHz
Z1-		5. Supporting the encoder cable length of up to 100m


The following figure shows the external wiring when the expansion card is used in combination with an open collector encoder. A pull-up resistor is configured inside the PG card.




The following figure shows the external wiring when the expansion card is used in combination with a push-pull encoder.

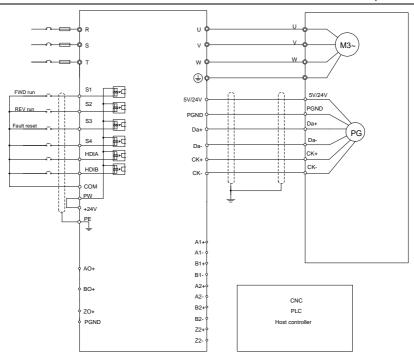


The following figure shows the external wiring when the expansion card is used in combination with a differential encoder.

A.6.7 Absolute encoder SSI communication PG card (EC-PG508-05B)

The terminals are arranged as follows:

PE	AO+	BO+	ZO+	A2+	B2+	Z2+	Da+	CK+	A1+	B1+
PGND	PGND	+24V	+5V	A2-	B2-	Z2-	Da-	CK-	A1-	B1-


Indicator definition:

Indicator	Definition	Function			
LED1	Status indicator	On: The expansion card is connecting with the control board. Blinks periodically (cycle: 1s; on: 0.5s; off: 0.5s): The expansion card is connected with the control board. Off: The expansion card is disconnected from the control board.			
LED2	Reserved	/			
LED3	Power indicator	This indicator is on after the control board feeds power to the expansion card.			

EC-PG508-05B terminal function description:

Signal	Port	Description
5V		Voltage: 5.2V ± 5%
PGND	Consider name	Max. output current: 150mA
24V	Encoder power	Voltage: 24V ± 5%
PGND		Max. output current: 100mA
PE	Encoder shield ground	Recommended double ended grounding for shielded wire grounding
Da+		
Da-		SSI signal, 5V differential input, interrupted clock signal
CK+	Encoder interface	synchronization, with clock frequency up to 736K
CK-		
A1+		
A1-	Reserved	
B1+		
B1-		
A2+		
A2-		4. Our parties. 51/ differential, 041/ much aut. 00 annulus
B2+	Incremental input	Supporting 5V differential, 24V push-pull, OC encoder 1. Supporting 5V differential, 24V push-pull, OC encoder
B2-	signal	signals
Z2+		2. Response frequency: 400kHz
Z2-		
AO+		Supporting open collector output
BO+	Frequency-divided	2. Response frequency: 400kHz
ZO+	output	3. Supporting frequency-divided output source selection, which
		can be set through the corresponding function code

The following figure shows the SSI card absolute signal encoder wiring when P21.34=0x3010 (SSI card inserted at slot 2).

In fully closed-loop wiring diagram, P21.34=0x2010 (SSI card inserted at slot 2), three types of input signal encoders are supported: 5V differential incremental encoder, 24V push-pull output incremental encoder, and 24V collector open incremental encoder.

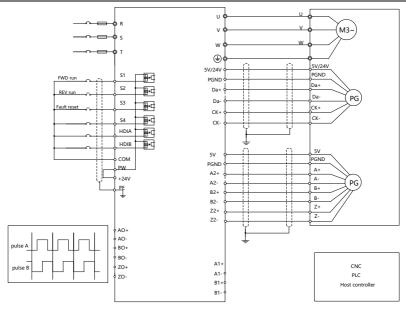


Figure A-7 Wiring of an SSI absolute encoder and 5V differential incremental encoder in a fully closed-loop mode

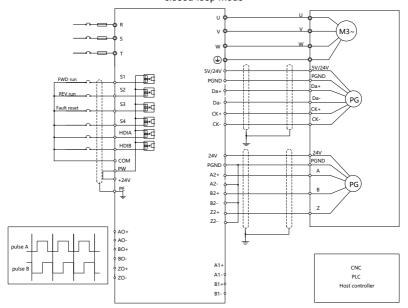


Figure A-8 Wiring of an SSI absolute encoder and 24V open collector incremental encoder in a fully closed-loop mode

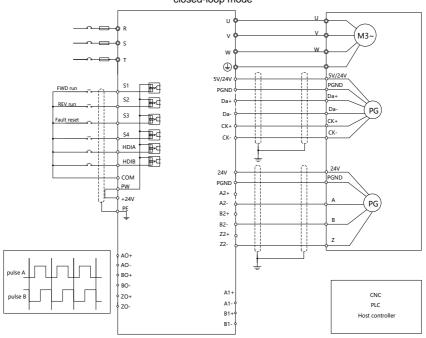


Figure A-9 Wiring of an SSI absolute encoder and 24V push-pull incremental encoder in a fully closed-loop mode

For the method of connecting the SSI card to an incremental encoder, refer to the preceding three wiring methods in a fully closed-loop mode.

A.7 IoT expansion card

A.7.1 4G expansion card (EC-IC502-2)

Terminal symbol and meaning

Terminal symbol	Description	Description
4-Pin terminal	RS485 communication	The terminals are 24V, GND, 485+, and 485-
4-Pin terminai	interface	respectively.
CN5	Antenna	4G antenna terminal
SIM	SIM card socket	For SIM card installation

Indicator meaning:

Indicator	Definition	Function						
LED1/ED2	3.8V power indicator	On: The expansion card is powered on.						
LED3	4G network indicator	Fast flashing (on 0.6s; off 0.6s): No SIM card/SIM PIN/Network registration in progress/Registration failed Slow flashing (on: 75ms; off: 3000ms): Standby. Quick flashing (on: 75ms; off: 75ms): Data link established.						
LED4	Handshaking indicator	Blinking with an interval of 1s: The expansion card is connected with the control board.						
LED5	Run indicator	On: Abnormal running. Blinking with an interval of 1s: Normal running. Off: Abnormal running.						

A.8 Power supply expansion cards

A.8.1 24V power supply expansion card (EC-PS501-24)

Indicator definition:

Indicator	Definition	Function
LED1	24V power	Indicator for the external 24\/ never
LEDI	indicator	Indicator for the external 24V power.
1.500	5V power	Indicator for the 5V power that is provided for the control board
LED2	indicator	after the switch power converts external power.

The 24V power supply card is mainly used to connect to external 24V power to power the control board, avoiding to apply electricity for independent control board commissioning. During wiring, connect to +24V and COM according to the CN2 sign.

Appendix B Technical data

B.1 What this chapter contains

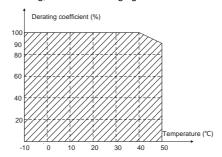
This chapter describes the technical data of the VFD and its compliance to CE and other quality certification systems.

B.2 Derated application

B.2.1 Capacity

Choose a VFD model based on the rated current and power of the motor. To endure the rated power of the motor, the rated output current of the VFD must be larger or equal to the rated current of the motor. The rated power of the VFD must be higher or equal to that of the motor.

Note:


- The maximum allowable shaft power of the motor is limited to 1.5 times the rated power of the
 motor. If the limit is exceeded, the VFD automatically restricts the torque and current of the motor.
 This function effectively protects the input shaft against overload.
- The rated capacity is the capacity at the ambient temperature of 40°C.
- You need to check and ensure that the power flowing through the common DC connection in the common DC system does not exceed the rated power of the motor.

B.2.2 Derating

If the VFD installation site ambient temperature exceeds 40°C, the installation site altitude exceeds 1000m, or the carrier frequency is changed from 4 kHz to 8, 12, or 15 kHz, the VFD needs to be derated.

B.2.2.1 Derating due to temperature

When the temperature ranges from 40°C to 50°C, the rated output current is derated by 1% for each increased 1°C. For the actual derating, see the following figure.

Note: It is not recommended to use the VFD at an environment with the temperature higher than 50°C. If you do, you shall be held accountable for the consequences caused.

B.2.2.2 Derating due to altitude

When the VFD installation site altitude is lower than 1000m, the VFD can run at the rated power.

When the altitude exceeds 1000m, derate by 1% for every increase of 100m. When the altitude exceeds 3000m, consult the local INVT dealer INVT office for details.

B.2.2.3 Derating due to carrier frequency

The VFDs in different power classes are different in carrier frequency. The rated power of a VFD is defined based on the carrier frequency set in factory. If the carrier frequency exceeds the factory setting, the power of the VFD is derated by 10% for each increased 1 kHz.

B.3 Grid specifications

Crid voltage	AC 3PH 380V(-15%) – 440V(+10%)
Grid voltage	AC 3PH 520V(-15%) – 690V(+10%)
	According to the definition in IEC 61439-1, the maximum allowable short-circuit
Short-circuit	current at the incoming end is 100 kA. Therefore, the VFD is applicable to
capacity	scenarios where the transmitted current in the circuit is no larger than 100kA when
	the VFD runs at the maximum rated voltage.
Frequency	50/60Hz±5%, with a maximum change rate of 20%/s

B.4 Motor connection data

Motor type	Asynchronous induction motor or permanent-magnet synchronous motor									
Voltage	0–U1 (motor rated voltage), 3PH symmetrical, Umax (VFD rated voltage) at the field-weakening point									
Short-circuit protection	The motor output short-circuit protection meets the requirements of IEC 61800-5-1.									
Frequency	0–400 Hz									
Frequency resolution	0.01Hz									
Current	See section 3.6 Product ratings.									
Power limit	1.5 times of the rated power of the motor									
Field-weakening point	10400Hz									
Carrier frequency	4, 8, 12, or 15kHz									

B.5 Application standards

The following table describes the standards that VFDs comply with.

EN/ISO 13849-1	Safety of machinery—Safety-related parts of control systems—Part 1:						
	General principles for design						
IEC/EN 60204-1	Safety of machinery—Electrical equipment of machines—Part 1:General requirements						
IEC/EN 62061	Safety of machinery—Safety-related functional safety of electrical,						
	electronic, and programmable electronic control systems						

IEC/EN 61800-3	Adjustable speed electrical power drive systems—Part 3: EMC requirements and specific test methods
IEC/EN 61800-5-1	Adjustable speed electrical power drive systems—Part 5-1: Safety requirements—Electrical, thermal and energy
IEC/EN 61800-5-2	Adjustable speed electrical power drive systems—Part 5-2: Safety requirements—Function
GB/T 30844.1-2014	General-purpose variable-frequency adjustable-speed equipment of 1 kV and lower—Part 1: Technical conditions
GB/T 30844.2-2014	General-purpose variable-frequency adjustable-speed equipment of 1 kV and lower—Part 2: Test methods
GB/T 30844.3-2017	General-purpose variable-frequency adjustable-speed equipment of 1 kV and lower—Part 3: Safety requirements

B.5.1 CE marking

The CE marking on the VFD nameplate indicates that the VFD is CE-compliant, meeting the regulations of the European low-voltage directive (2014/35/EU) and EMC directive (2014/30/EU).

B.5.2 EMC compliance declaration

European union (EU) stipulates that the electric and electrical devices sold in Europe cannot generate electromagnetic disturbance that exceeds the limits stipulated in related standards, and can work properly in environments with certain electromagnetic interference. The EMC product standard (EN 61800-3) describes the EMC standards and specific test methods for adjustable speed electrical power drive systems. Our products have been compliant with these EMC regulations.

B.6 EMC regulations

The EMC product standard (EN61800-3) describes the EMC requirements on VFDs.

Application environment categories:

First environment: Civilian environment, including application scenarios where VFDs are directly connected to the civil power supply low-voltage grids without intermediate transformers.

Second environment: All locations outside a residential area.

VFD categories:

Category C1: VFD of rated voltage lower than 1000V, applied to the first environment.

Category C2: VFD of rated voltage lower than 1000V, which is neither a non-plug, socket, nor mobile devices and must be installed and commissioned by a professional person when used in the first environment

Note: The EMC standard IEC/EN 61800-3 no longer restricts the power distribution of VFDs, but it specifies their use, installation, and commissioning. Specialized personnel or organizations must have the necessary skills (including the EMC-related knowledge) for installing and/or performing commissioning on the electrical drive systems.

Category C3: VFD of rated voltage lower than 1000V, applied to the second environment. They cannot be applied to the first environment.

Category C4: VFD of rated voltage higher than 1000V, or rated current higher or equal to 400A, applied to complex systems in the second environment.

B.6.1 VFD category of C2

The induction disturbance limit meets the following stipulations:

- Select an optional EMC filter according to and install it following the description in the EMC filter manual.
- Select the motor and control cables according to the description in the manual.
- Install the VFD according to the description in the manual.

The product may generate radio interference in some environments, and you need to take measures to reduce the interference.

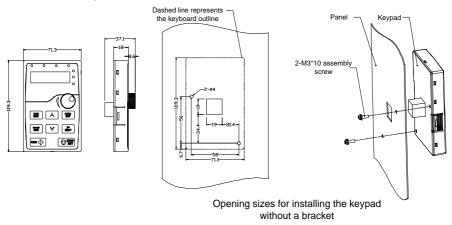
B.6.2 VFD category of C3

The anti-interference performance of the VFD meets the requirements of the second environment in the IEC/EN 61800-3 standard.

The induction disturbance limit meets the following stipulations:

- Select an optional EMC filter according to and install it following the description in the EMC filter manual.
- Select the motor and control cables according to the description in the manual.
- Install the VFD according to the description in the manual.

VFDs of category C3 cannot be applied to civilian low-voltage common grids. When applied to such grids, the VFD may generate radio frequency electromagnetic interference.


Appendix C Dimension drawings

C.1 What this chapter contains

This chapter provides VFD dimensions, which use millimeter (mm) as the unit.

C.2 LED keypad

C.2.1 Structure diagram

C.2.2 Keypad mounting bracket

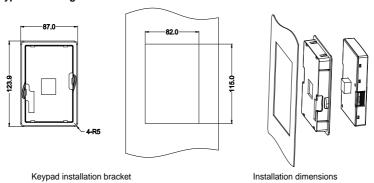


Figure C-1 (Optional) Keypad installation bracket for 380V 1.5–315kW and 660V 22–630kW models

Note:

If you need install the keypad externally (that is, on another position rather than on the VFD), you
can use M3 screws to fix the keypad, or you can use the keypad installation bracket to install the
keypad.

 The installation bracket is an optional part for 380V 1.5–30kW and 500V 4–18.5kW VFD models, but it is a standard part for 380V 37–500kW, 500V 22–500kW, and 660V VFD models.

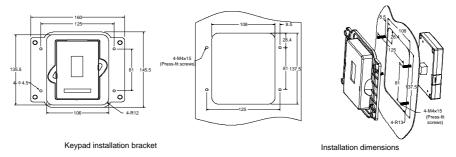


Figure C-2 (Standard) Keypad installation bracket for 380V 37–315kW and 660V 22–630kW VFD models

C.3 LCD keypad

C.3.1 Structure diagram

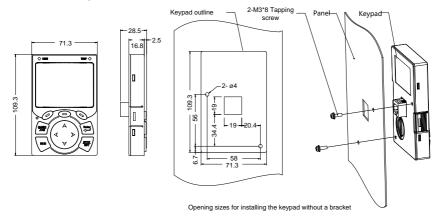


Figure C-3 Keypad structure

C.3.2 Keypad mounting bracket

Note:

- The external keypad can be mounted directly with M3 threaded screws or with a keypad bracket.
- For VFDs of 380V 1.5–75 kW, the keypad installation bracket is an optional part. For VFDs of 380V 90–500kW and 660V 22–630kW, you can use optional brackets or use the standard keypad brackets externally.

Figure C-4 (Optional) Keypad installation bracket for 380V 1.5–500kW and 660V 22–630kW models

C.4 VFD structure

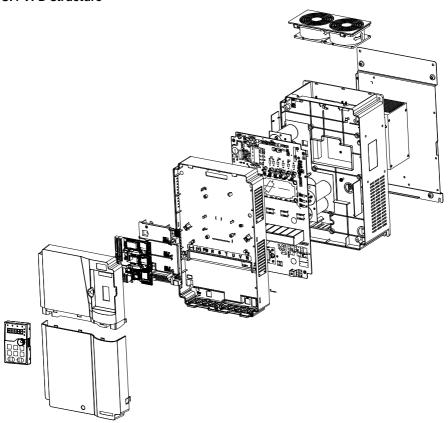
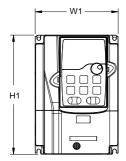
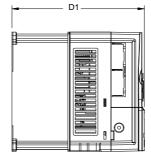




Figure C-5 VFD structure

C.5 Dimensions of AC 3PH 380V (-15%)-440V (+10%)

C.5.1 Wall mounting dimensions

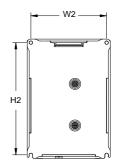
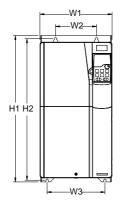



Figure C-6 Wall mounting for 380V 1.5-37kW VFD models

VFD model	Outline dimensions (mm)				distance nm)	Hole diameter	Screw	Net weight	Gross weight
	W1 H1 D1		D1	W2 H2		(mm)		(kg)	(kg)
1.5kW-2.2kW	126	186	185	115	175	ø 5	M4	2	3
4kW-5.5kW	126	186	201	115	175	Ø 5	M4	2.5	3.5
7.5kW	146	256	192	131	243.5	ø6	M5	3	4
11kW-15kW	170	320	220	151	303.5	ø6	M5	6	7
18.5kW-22kW	200	340.6	208	185	328.6	ø6	M5	8.5	10.5
30kW-37kW	250	400	223	230	380	ø6	M5	16	17

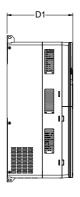


Figure C-7 Wall mounting for 380V 45–37kW VFD models

VFD model	Outline dimensions (mm)			Hole distance (mm)			Hole diameter	Screw		Gross weight
	W1	H1	D1	W2	W3	H2	(mm)		(kg)	(kg)
45–75kW	282	560	258	160	226	542	ø 9	M8	25	29

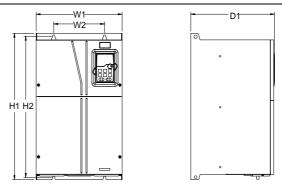


Figure C-8 Wall mounting for 380V 90-110kW VFD models

	Outline dimensions			Hole dis	stance	Hole		Net	Gross
VFD model	(mm)			(mm)		diameter	Screw	weight	weight
	W1	H1	D1	W2	H2	(mm)		(kg)	(kg)
90–110kW	338	554	330	200	535	ø 10	M8	41	52

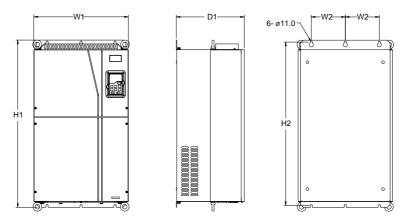


Figure C-9 Wall-mounting diagram for 380V 132-200kW VFD models

VFD model	Outline dimensions (mm)			Hole distance (mm)		Hole diameter	Screw	Net weight	Gross weight
	W1	H1	D1	W2	H2	(mm)		(kg)	(kg)
132–200kW	500	872	360	180	850	ø 11	M10	85	110

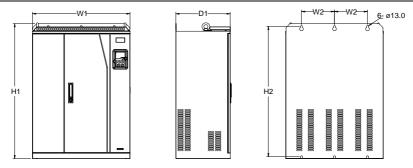


Figure C-10 Wall mounting for 380V 220-315kW VFD models

ſ		Outline dimensions			Hole di	stance	Hole		Net	Gross
	VFD model	(mm)			(mm)		diameter	Screw	weight	weight
		W1	H1	D1	W2	H2	(mm)		(kg)	(kg)
ſ	220-315kW	680	960	380	230	926	ø 13	M12	135	165

C.5.2 Flange mounting dimensions

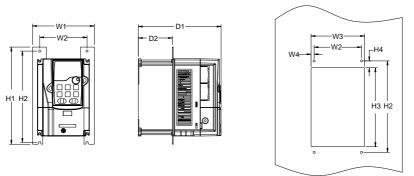


Figure C-11 Flange mounting for 380V 1.5-75kW VFD models

VFD model	dime	utline ensic mm)			Mou nens (mn	ions	Н	lole di (mı			Hole diameter	Screw	•	_
	W1	H1	D1	W2	H2	D2	W3	Н3	W4	H4	(mm)		(kg)	(kg)
1.5-2.2kW	150.2	234	185	115	220	65.5	130	190	7.5	13.5	ø5	M4	2	3
4-5.5kW	150.2	234	201	115	220	83	130	190	7.5	13.5	ø5	M4	2.5	3.5
7.5kW	170.2	292	192	131	276	84.5	150	260	9.5	6	ø6	M5	3	4
11–15kW	191.2	370	220	151	351	113	174	324	11.5	12	ø6	M5	6	7
18.5-22kW	266	371	208	250	250	104	224	350.6	13	20.3	ø6	M5	8.5	10.5
30-37kW	316	430	223	300	300	118.3	274	410	13	55	ø6	M5	16	17
45–75kW	352	580	258	332	400	133.8	306	570	12	80	ø 9	M8	25	29

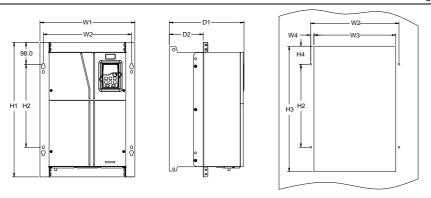


Figure C-12 Flange mounting for 380V 90-110kW VFD models

VFD model		tline ons ((mm)		loun sions		Н	ole dis	stance	(mm)	Hole diameter	Screw		Gross weight
	W1	H1	D1	W2	H2	D2	W3	Н3	W4	H4	(mm)		(kg)	(kg)
90–110kW	418.5	600	330	389.5	370	149.5	361	559	14.2	108.5	ø 10	M8	41	52

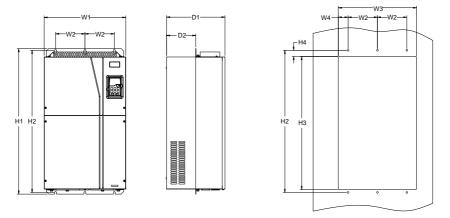


Figure C-13 Flange mounting for 380V 132–200kW VFD models

VFD model	dim	utlin ensi (mm)	ons		Moui nens (mm	ions	Но	ole di (mi			Hole diameter	Screw	•	•
	W1	H1	D1	W2	H2	D2	W3	НЗ	W4	H4	(mm)		(kg)	(kg)
132–200kW	500	872	360	180	850	178.5	480	796	60	37	ø 11	M10	85	110

C.5.3 Floor mounting dimensions

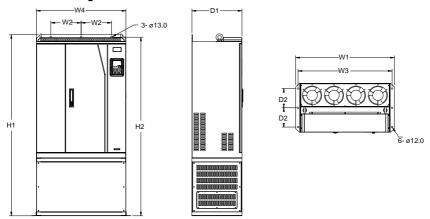


Figure C-14 Floor mounting for 380V 220-315kW VFD models

VFD model	Outl	ine dir (mr		ions	Moun	t dime	ension	(mm)	Hole diameter	Fixing	Net weight	Gross weight
	W1	H1	D1	W4	W2	W3	H2	D2	(mm)	screw	(kg)	(kg)
220-315kW	750	1410	380	680	230	714	1390	150	ø 13/12	M12/M10	135	165

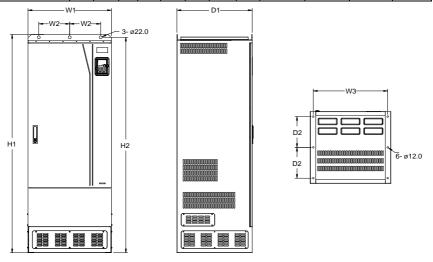


Figure C-15 Floor mounting for 380V 355-500kW VFD models

VFD model	Outline (dimen mm)	sions	Мо		mensio m)	-	Hole diameter	Screw	Net weight	
	W1	H1	D1	W2	W3	H2	D2	(mm)		(kg)	weight (kg)
355-500kW	620	1700	560	230	572	1678	240	ø 22/12	M20/M10	350	407

C.6 Dimensions of AC 3PH 520V (-15%)-690V (+10%)

C.6.1 Wall-mounting dimensions

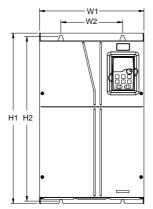


Figure C-16 Wall mounting for 660V 22-132kW VFD models

VFD model	Outli	ne dimens (mm)	sions		lount sions (mm)	Hole diameter	Screw	Net weight	Gross weight
	W1	H1	D1	W2	H2	(mm)		(kg)	(kg)
22-45kW	270	557	325	130	540	ø 7	M6	30	32
55–132kW	325	682	365	200	661	ø 9.5	M8	47	67

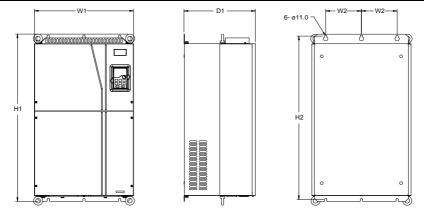


Figure C-17 Wall mounting for 660V 160-220kW VFD models

	Outline d	imension	s (mm)	Installat dimension		Installation Hole	Fixed	weight	Gross
VFD model	W1	H1	D1	W2	H2	diameter (mm)	Screw	(kg)	weight (kg)
160-220kW	500	872	360	180	850	ø 11	M10	85	110

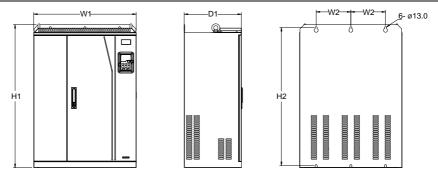


Figure C-18 Wall mounting for 660V 250-355kW VFD models

VFD model	Outline dimensions (mm) W1 H1 D1 680 960 380	dimer	ount nsions nm)	Hole diameter	Screw	•	Gross		
	W1	H1	D1	W2	H2	(mm)		(kg)	(kg)
250-355kW	680	960	380	230	926	ø 13	M12	135	165

C.6.2 Flange mounting dimensions

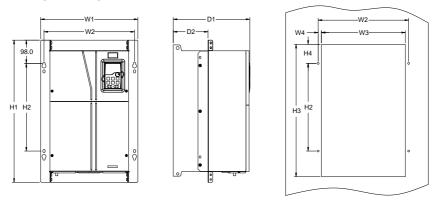


Figure C-19 Flange mounting for 660V 22-132kW VFD models

VFD model	din	Outlin nensi (mm)	ons	dim	/loun ensi (mm)	ons	Н		distan nm)		Hole diameter	Screw	•	•
	W1	H1	D1	W2	H2	D2	W3	НЗ	W4	H4	(mm)		(kg)	(kg)
22-45kW	270	557	325	130	540	167	261	516	65.5	17.5	ø 7	M6	30	32
55–132kW	325	682	363	200	661	182	317	626	58.5	23.5	ø 9.5	M8	47	67

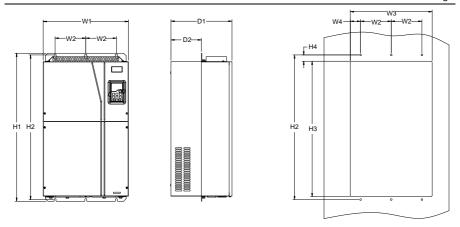


Figure C-20 Flange mounting for 660V 160–220kW VFD models

VFD model		Outlin mensi (mm)	ons	dime	Moun nsions	t s (mm)	Hole	Hole distance (mm)	Hole diameter (mm)	Screw		•		
	W1	H1	D1	W2	H2	D2	W3	Н3	W4	H4	(11111)		(kg)	(kg)
160-220kW	500	872	358	180	850	178.5	480	796	60	37	ø 11	M10	85	110

C.6.3 Floor mounting dimensions

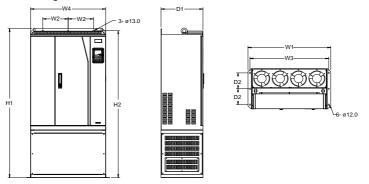


Figure C-21 Floor mounting for 660V 250-355kW VFD models

VFD model	Out	line din (mn		ons	Moui	nt dim	ensions	(mm)	Hole diameter	Screw	Net weight	Gross weight
	W1	H1	D1	W4	W2	W3	H2	D2	(mm)		(kg)	(kg)
250-355kW	750	1410	380	680	230	714	1390	150	ø 13/12	M12/M10	135	165

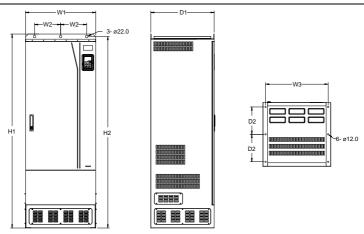
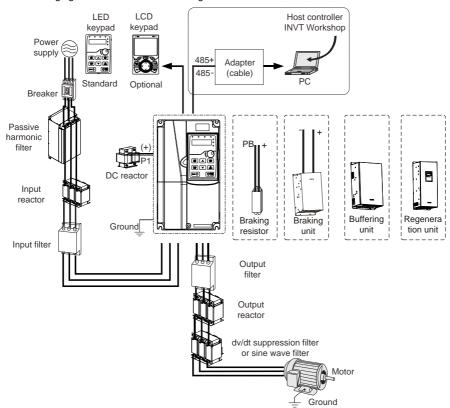


Figure C-22 Floor mounting for 660V 400–630kW VFD models

VFD model	_	Outline nensio (mm)	-	Mou	nt dim (mr		ns	Hole diameter	Screw		Gross weight
	W1	H1	D1	W2	W3	H2	D2	(mm)		(kg)	(kg)
400–630kW	620	1700	560	230	572	1678	240	ø 22/12	M20/M10	350	407


Appendix D Optional peripheral accessories

D.1 What this chapter contains

This chapter describes how to select optional accessories of the VFD.

D.2 External wiring

The following figure shows the external wiring of the VFD.

Note:

- The 380V 110kW and lower VFD models are equipped with built-in braking units.
- The 380V 18.5–110kW VFD models are equipped with built-in DC reactors.
- P1 terminals are equipped only for 380V 132kW and higher models, which enable the VFDs to be directly connected to external DC reactors.
- P1 terminals are equipped for all 660V models, which enable the VFDs to be directly connected

to external DC reactors.

• The braking units are INVT DBU series standard braking units. For details, see the DBU operation manual.

Image	Name	Description		
	Cable	Accessory for signal transmission.		
	Breaker	Device for electric shock prevention and protection against short-to-ground that may cause current leakage and fire. Select residual-current circuit breakers (RCCBs) that are applicable to VFDs and can restrict high-order harmonics, and of which the rated sensitive current for one VFD is larger than 30mA.		
	Input reactor	Accessories used to improve the power factor on the input side of the VFD, and thus restrict high-order harmonic currents.		
4	DC reactor	VFDs of 380V 18.5–110kW are equipped with built-in reactors, and VFDs of 380V 132kW and higher and 660V series can be directly connected to external DC reactors.		
200	Input filter	Accessory that restricts the electromagnetic interference generated by the VFD and transmitted to the public grid through the power cable. Try to install the input filter near the input terminal side of the VFD.		
and	Braking unit and braking resistor	Accessories used to consume the regenerative energy of the motor to reduce the DEC time. VFDs of 380V 110kW and lower need only to be configured.		
000	Output filter	Accessory used to restrict interference generated in the wiring area on the output side of the VFD. Try to install the output filter near the output terminal side of the VFD.		
	Output reactor	Accessory used to lengthen the valid transmission distance of the inverter, which effectively restrict the transient high voltage generated during the switch-on and switch-off of the IGBT module of the inverter.		

D.3 LCD keypad

The product supports the optional LCD keypad and LCD keypad bracket. The following table lists supported models.

Name	Description	Order No.
LCD keypad	KEY-LCD01-ZY-350-19	11022–00152
Keypad bracket	GD350 compatible keypad bracket	19005–00149

Name	Description	Order No.	
3m keypad cable	Keypad cable: L=3M(CHV-SE)	37005-00022	

Figure D-1 Keypad

Note:

- The LCD keypad is equipped with a real-time clock, which can run properly after being installed with batteries even if the power line is disconnected. The clock battery (type: CR2032) is user purchased.
- The LCD keypad has the parameter copying function.
- If you need install the keypad externally (that is, on another position rather than on the VFD), you
 can use M3 screws to fix the keypad, or you can use the keypad installation bracket to install the
 keypad. When installing the keypad externally, use an extension cable with a standard RJ45
 crystal head for connection.

No.	Name		Description				
		(1)	RUN TRIP QUICK/JOG		Run indicator On: The VFD is running. Blinking: The VFD is in parameter autotuning.		
1	Status indicator	(2)			Off: The VFD is stopped. Fault indicator On: Faulty Blinking: Pre-alarm Off: Normal		
		(3)			Short-cut key indicator, which displays different state under different functions, see definition of QUICK/JOG key for details.		
2	Keys	(4) (5)		Function key	The function of function key varies with the menu.		

No.	Name				Description
		(6)			The function of function key is displayed in
		(0)			the footer
					Re-definable. It is defined as JOG function by
					default, namely jogging. The function of
					short-cut key can be set by the ones of
					P07.02, as shown in the following:
					0: No function
					1: Jogging (linkage indicator (3); logic: steady on)
					2: Reserved
					3: FWD/REV switch-over (linkage indicator
		(7)	QUICK	Short-cut key	(3); logic: steady off)
					4: Clear the UP/DOWN setting (linkage
					indicator (3) logic: steady off)
					5: Coast to stop (linkage indicator (3); logic:
					steady off)
					6: Switch command channels in sequence
					(linkage indicator (3); logic: steady off)
					7: Reserved
					Note: After restoring to default values, the default function of short-cut key (7) is 1.
					The function of confirmation key varies with
				Confirmation key	menus, such as confirming parameter setup,
		(8)	B) Enter		confirming parameter selection, and entering
				Коу	the next menu.
					Under keypad operation mode, the running
		(9)	RUN	Run key	key is used for running operation or
		. ,			autotuning operation.
					Press it to stop the VFD that is running or
			STOP RST		autotuning. The function of this key is
		(10)		Stop/Reset key	restricted by P07.04. In fault alarm state, this
					key can be used for reset in any control
					modes.
				Direction key	Up: The Up key function varies with
				Up:	interfaces, such as shifting up the displayed
				~	item, shifting up the selected item, and
		(11)		Down:	changing digits.
				Left:	Down: The Down key function varies with
				Pight: >	interfaces, such as shifting down the
				Right:	displayed item, shifting down the selected

No.	Name		Description			
					item, changing digits. Left: The Left key function varies with interfaces, such as switch over the monitoring	
					interface, such as shifting the cursor leftward, exiting current menu and returning to previous menu.	
					Right: The Right key function varies with interfaces, such as switching the monitoring interface, shifting the cursor rightward, and entering the next-level menu.	
3	Display area	(12)	LCD screen	Display screen	240×160 dot-matrix LCD; display three monitoring parameters or six sub-menu items simultaneously.	
		(13)	RJ45 interface	RJ45 interface	RJ45 interface is used to connect to the VFD.	
4	Other	(14)	Battery cover	Clock battery cover	Remove this cover when replacing or installing clock battery, and close the cover after battery is installed.	
		(15)	USB terminal	Mini USB terminal	Mini USB terminal is used to connect to the USB flash drive through an adapter.	

The LCD has different display areas, which displays different contents under different interfaces. The following figure is the main interface of stop state.

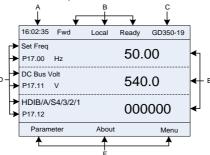


Figure D-2 LCD main interface

Area	Name	Used to
Header	Dool time display area	Display the real-time; clock battery is not included; the time
Α	Real-time display area	needs to be reset when powering on the VFD
Header	VFD running state	Display the motor rotation direction: "Fwd" – Run forward
В	display area	during operation; Rev – Run reversely during operation;

Area	Name	Used to	
		"Disrev" – Reverse running is forbidden	
		Display the VFD running command channel: "Local" –	
		Keypad; "Trml" - Terminal; "Remote" - Communication	
		Display current running state of the VFD : "Ready" – The	
		VFD is in stop state (no fault); "Run" – The VFD is in	
		running state; "Jog" – The VFD is in jogging state;	
		"Pre-alarm" – the VFD is under pre-alarm state during	
		running; "Fault" – VFD fault occurred.	
Header	Madal diaplay area	VFD model display: "GD350-19" – The present VFD is	
С	Model display area	GD350-19.	
Dieploy	Parameter names and	Display a maximum of three parameter names and function	
Display D	function codes on the	codes on the homepage. The parameters displayed on the	
D	VFD homepage	homepage can be managed.	
Display	Values of parameters	Display the values of parameters on the VFD homepage,	
Е	on the VFD homepage	which are updated in real time.	
	Common din a month	Indicate the menus corresponding to function keys (4), (5)	
	Corresponding menu	and (6). The corresponding menus of function keys (4), (5)	
Footer F	of function key (4), (5)	and (6) vary with interfaces, and the content displayed in this	
	and (6)	area varies also.	

D.3.1 LCD keypad display

The VFD keypad can display the stopped-state parameters, running-state parameters, function parameter editing status, and fault alarm status.

D.3.1.1 Displaying stopped-state parameters

When the VFD is in stopped state, the keypad displays stopped-state parameters, and this interface is the main interface during power-on by default. Under stop state, parameters in various states can

be displayed. Press or to shift the displayed parameter up or down.

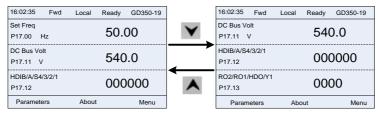


Figure D-3 Stopped-state parameter display 1

Press or to switch between different display styles, including list display style and progress bar display style.

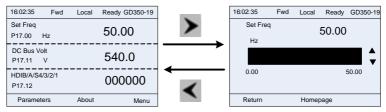


Figure D-4 Stopped-state parameter display 2

The stop display parameter list is user defined, and each state variable function code can be added to the stop display parameter list as needed. The state variable which has been added to the stop display parameter list can also be deleted or shifted.

D.3.1.2 Displaying running-state parameters

After receiving valid running command, the VFD will enter running state, and the keypad displays running state parameter with RUN indicator on the keypad turning on. Under running state, multiple kinds of state parameters can be displayed. Press or to shift up or down.

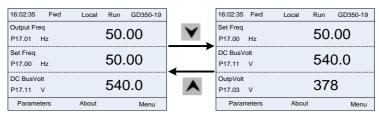


Figure D-5 Running-state parameter display 1

Press or to switch between different display styles, including list display style and progress bar display style.

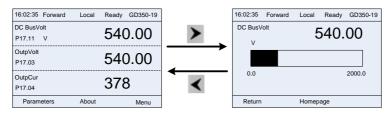


Figure D-6 Running-state parameter display 2

In running state, multiple kinds of state parameters can be displayed. The running display parameter list is user defined, and each state variable function code can be added to the running display parameter list as needed. A function code that has been added to the running display parameter list can also be deleted or shifted.

D.3.1.3 Displaying fault information

The VFD enters fault alarm display state once fault signal is detected, and the keypad displays fault code and fault information with TRIP indicator on the keypad turning on. You can perform fault reset by using the STOP/RST key, control terminals, or communication commands.

If the fault persists, the fault code is continuously displayed.

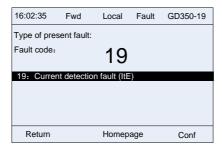


Figure D-7 Fault alarm display

D.3.2 Operating the VFD through the LCD keypad

Various operations can be performed on the VFD, including entering/exiting menu, parameter selection, list modification and parameter addition.

D.3.2.1 Entering/Exiting menus

The keypad displays three main menus at the home interface by default: **Parameter**, **About**, and **Menu**. The following figure shows how to enter the **Parameter** main menu and how to operate under this main menu.

Figure D-8 Entering/exiting the parameter menu

The following figure shows how to enter or exit different menus step by step.

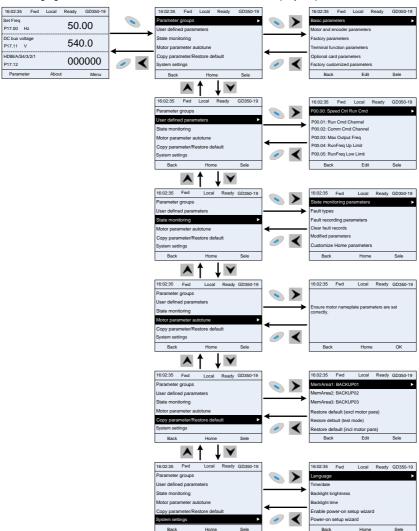


Figure D-9 Entering/exiting different menus

The keypad menu setup is shown as follows:

Level 1	Level 2	Level 3	Level 4
		P00: Basic functions	P00.xx
		P01: Start and stop control	P01.xx
		P03: Vector control of motor	P03.xx
		P04: V/F control	P04.xx
		P07: Human-machine	1 04.88
		interface	P07.xx
		P08: Enhanced functions	P08.xx
		P09: PID control	P09.xx
	Basic parameters	P10: Simple PLC and multi-step speed control	P10.xx
		P11: Protection parameters	P11.xx
		P13: SM control parameters	P13.xx
		P14:Serial communication function group	P14.xx
		P21: Position control	P21.xx
		P22: Spindle positioning	P22.xx
Parameter groups		P23: Vector control of motor 2	P23.xx
groups	Motor and encoder parameters	P02: Motor 1 parameters	P02.xx
		P12: Motor 2 parameters	P12.xx
		P20: Motor 1 encoder group	P20.xx
		P20: Motor 2 encoder group	P24.xx
 	Factory parameters	P99: Factory function group	XXXXX
	Terminal function	P05: Input terminal group	P05.xx
		P06: Output terminal group	P06.xx
	parameters	P98: AIAO calibration functions	xxxxx
		P15: Communication	
		expansion card 1 functions	P15.xx
	Onting	P16: Communication	D4C vvv
	Optional card parameters	expansion card 2 functions	P16.xx
		P25: Expansion I/O card input functions	P25.xx
		P26: Expansion I/O card	P26.xx

Level 1	Level 2	Level 3	Level 4
		output functions	
		P27: Programmable	
		expansion card functions	P27.xx
		P28: Master/slave control	P28.xx
		P90: Functions special for	
		cranes	P90.xx
		P91: Hoisting expansion	
	Factory	functions	P91.xx
	customized	P92: Hoisting protection	
	parameters	function group 3	P92.xx
	·	P93: Closed-loop hoisting	
		functions	P93.xx
		P94: Hoisting status display	P94.xx
			P00.00: Speed control
			mode
User defined	/	/	P00.01: Running command
parameters			channel
			Pxx.xx
	State monitoring parameters	P07: HMI	P07.xx
		P17: State Viewing Func	P17.xx
		P18: CI-lpCtrlStateView	P18.xx
		P19: Ex-card StateView	P19.xx
		P94: Hoisting status display	P94.xx
			P07.27: TypeofLatelyFault
			P07.28:
			Typeof1stLastFault
			P07.29:
State monitoring			Typeof2ndLastFault
	Fault types	/	P07.30:
			Typeof3rdLastFault
			P07.31:
			Typeof4thLastFault
			P07.32:
			Typeof5thLastFault
			P07.33: RunFreq
	Fault recording	/	atLatelyFault
	parameters		P07.34: Ramp frequency at
			present fault

Level 1	Level 2	Level 3	Level 4
			P07.xx: xx state of the last
			but xx fault
	Clear fault		Sure to clear fault records?
	records	/	Sure to clear fault records:
			Pxx.xx has modified
			parameter 1
	Modified	1	Pxx.xx has modified
	parameter	,	parameter 2
			Pxx.xx has modified
			parameter xx
	Customize Home	Stopped-state parameters	/
	parameters	Running-state parameters	1
			Complete para rotary
			autotune
			Complete para static
Motor		Ensure motor nameplate	autotune
parameter	/	parameters are set correctly.	Partial para static autotune
autotuning		parameters are set correctly.	Complete para rotary
			autotune 2 (for AM)
			Partial para static autotune
			2 (for AM)
			Upload parameters from
			the local address to the
			keypad
			Download all param from
		MemArea1: BACKUP01	keypad
			Download non motor
			param from keypad
Parameter			Download motor param
backup/restore	/		from keypad
default value	·		Upload param from local to
			keypad
			Download all param from
			keypad
		MemArea2: BACKUP02	Download non-motor
			function parameters from
			the keypad
			Download motor param
			from keypad

Level 1	Level 2	Level 3	Level 4
			Upload param from local to
			keypad
			Download all param from
		MemArea3: BACKUP03	keypad
		Memareas: BACKUPUs	Download non motor
			param from keypad
			Download motor param
			from keypad
		Restore default (excl. motor	Check Restore default
		param)	(excl. motor param)
		Restore to default values	Sure to restore to default
		(test mode)	values? (test mode)
		Restore to default (incl.	Sure to restore to default
		motor param)	(incl. motor param)
			Language
			Time/date
	/		Backlight brightness
			regulation
			Backlight time adjustment
0			Power-on guiding enable
System settings		/	Power-on guiding settings
			Keyboard burning selection
			Fault time enable
			Control board burning
			selection
			Up/Down key sensitivity

D.3.2.2 Editing a parameter list

The parameters in the parameter list in stopped state can be added as needed (through the menu of user defined home parameters), and the list can also be edited such as "Move up", "Move down", "Delete from the list", and "Restore default". The edit function is shown in the following.

Figure D-10 Editing list 1

key to enter the edit interface, select the operation needed, and press the 🕒 key,

ey or 📴

key to confirm the edit operation and return to the previous menu (parameter list).

The returned list is the list edited. If the key or key is pressed in the edit interface without selecting the edit operation, it will return to the previous menu (while the parameter list remains unchanged).

Note: For the parameter objects in the list header, move-up operation will be invalid, and the same principle can be applied to the parameter objects in the list footer; after deleting a certain parameter, the parameter objects under it will be moved up automatically.

The items in the parameter list in running state can be added as needed (through the menu of user defined home parameters), and the list can also be edited such as "Place top", "Move up", "Move down", "Delete from the list", and "Restore default parameters". The edit function is shown in the interface below.

Figure D-11 Editing list 2

The parameters of user defined parameter setting can be added, deleted or adjusted as needed, such as "Place top", "Move up", "Move down", "Delete from the list", and "Restore default parameters"; the adding function can be set in a certain function code in a function group. The edit function is shown in the figure below.

Figure D-12 Editing list 3

D.3.2.3 Adding parameters to the parameter list displayed in stopped/running state

You can choose **Menu** > **State monitoring**, choose a submenu, and enter a specific function group and then a specific function code to add the parameter to the list of parameters displayed in stopped state or parameters displayed in running state.

Figure D-13 Adding parameters 1

After selecting a specific function code, press key to enter parameter addition interface, and press key, key or key to confirm the addition operation. If this parameter is not included in the list of parameters displayed in stopped state or list of parameters displayed in running state, the parameter added will be at the end of the list; if the parameter is already in the list of parameters displayed in stopped state or list of parameters displayed in running state, the addition operation will be invalid. If key or key is pressed without selecting addition operation in "Addition" interface, it will return to monitoring parameter list menu.

Part of the monitoring parameters in P07 HMI group can be added to the "parameter displayed in stop state" list or "parameter displayed in running state" list; all the parameters in P17, P18 and P19 group can be added to the "parameter displayed in stop state" list or "parameter displayed in running state" list.

Up to 16 monitoring parameters can be added to the list of parameters displayed in stopped state; and up to 32 monitoring parameters can be added to the list of parameters displayed in running state.

D.3.2.4 Adding parameters to the user defined parameter setting list

You can choose **Menu** > **Parameter groups**, choose a submenu, and enter a specific function group and then a specific function code to add the parameter to the user defined parameter list.

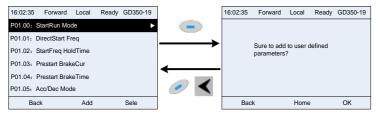


Figure D-14 Adding parameters 2

Press key to enter addition interface, and press key, key or key to confirm the addition operation. If this parameter is not included in the original user defined parameter list, the newly-added parameter will be at the end of the list; if this parameter is already in the user defined parameter list, the addition operation will be invalid. If key or key is pressed without selecting addition operation, it will return to parameter setup list menu.

All the function code groups under the submenu can be added to user defined parameter list. Up to 64 function codes can be added to the user defined parameter list.

D.3.2.5 Editing user defined parameters

After accessing a specific function code under the **User defined parameters** menu, you can press the key, key or key to enter the parameter edit interface. After entering the edit interface, the present value is highlighted. Press the key and key to edit the parameter value, and the corresponding parameter item of current value will be highlighted automatically. After the edit operation is completed, press or key to save the selected parameter and return to the previous menu; or press key to maintain the value and return to the previous menu.

Figure D-15 Parameter selection edit interface

In parameter selection edit interface, the "Auth" field in the upper right corner indicates whether this parameter is editable or not.

- " \ " indicates the set value of this parameter can be modified under the present state.
- "×" indicates the set value of this parameter cannot be modified under the present state.

"Default" indicates the default value of this parameter.

D.3.2.6 Editing parameters in parameter groups

You can choose **Menu** > **Parameter groups**, enter a specific function group and then a specific function code, and then press key, key or key to edit the parameter setting interface. After entering edit interface, set the parameter from low bit to high bit, and the bit under setting will be highlighted. Press key or key to increase or decrease the parameter value (this operation is valid until the parameter value exceeds the max. value or min. value); press or

[&]quot;Present" indicates the actually selected value.

to shift the editing bit. After parameters are set, press or key to save the set parameters and return to the previous menu; press to maintain the original parameter value and return to the previous menu.

Figure D-16 Parameter setup edit interface

In parameter selection edit interface, the "Auth" field in the upper right corner indicates whether this parameter is editable or not.

"\" indicates the set value of this parameter can be modified under current state.

"x" indicates the set value of this parameter cannot be modified under current state.

"Current value" indicates the value saved last time.

"Default" indicates the default value of this parameter.

D.3.2.7 Monitoring states

You can choose **Menu** > **State monitoring** > **State monitoring parameter**, enter a specific function group and then a specific function code, and press key, key or key to enter the state monitoring interface. After entering the state monitoring interface, the actual parameter value will be displayed in real time, this value is the actually detected value which cannot be modified.

In the state monitoring interface, you can press key or key to return to the previous menu.

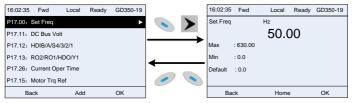


Figure D-17 State monitoring interface

D.3.2.8 Autotuning motor parameters

You can choose **Menu** > **Motor parameter autotune** and press key, key or key to enter motor parameter autotuning interface. However, before entering the motor parameter autotuning interface, you must set the motor nameplate parameters correctly. After entering the interface, select a motor autotuning type to carry out motor parameter autotuning. In motor parameter

autotuning interface, you can press key or key to return to the previous menu. 16:02:35 Fwd Local Ready GD350-19 16:02:35 Fwd Fwd Local Ready GD350-19 Local Ready GD350-19 Parameter groups User defined param Complete para static autoto Partial para static autotune Complete para rotary autotune 2 (for AM) Copy parame Partial para static autotune 2 (for AM) ОК

Figure D-18 Parameter autotuning operation

After selecting a motor autotuning type, enter motor parameter autotuning interface, and press RUN key to start motor parameter autotuning. After autotuning is done, a message will pop up indicating autotuning is succeeded, and then it will return to the main interface of stop. During autotuning, you can press STOP/RST key to terminate autotuning; if any fault occur during autotuning, the keypad will display a fault interface.

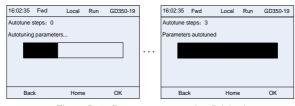


Figure D-19 Parameter autotuning finished

D.3.2.9 Backing up parameters

You can choose Menu > Copy parameter/Restore default, and press

key, > key or

key to enter the function parameter backup interface and function parameter restoration interface to upload/download VFD parameters, or restore VFD parameters to default values. The keypad has three different storage areas for parameter backup, and each storage area can save the parameters of one VFD, which means the keypad can save parameters of three VFDs in total.

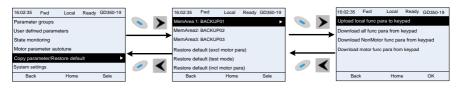


Figure D-20 Parameter backup

D.3.2.10 System settings

You can choose **Menu** > **System settings**, and press \ key, \ key or \ key to enter system setting interface to set the keypad language, time/date, backlight brightness, backlight time and restore parameters.

Note: Clock battery is not included, and the keypad time/date needs to be reset after power off.

If time-keeping after power off is needed, you should purchase the clock batteries separately.

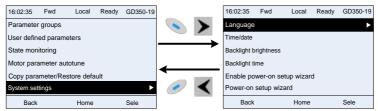
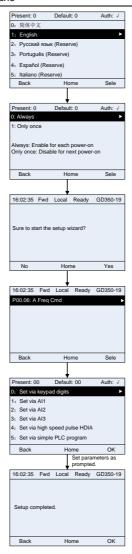



Figure D-21 System setting

D.3.2.11 Power-on guiding settings

The keypad supports the power-on setup wizard function, mainly for the first power-on situation, instructing you to enter the setting menu, and gradually implementing basic functions such as basic parameter setting, direction judgment, mode setting and autotuning.

For first power-on, the keypad automatically enters the setup wizard interface. See the following.

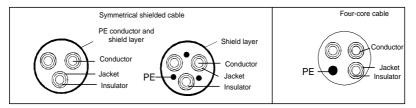
If you want to change the guiding settings, you can choose **Menu > System settings**, and then choose **Enable power-on setup wizard** or **Power-on setup wizard**, and then make changes.

D.4 Power supply

See chapter 4 Installation guidelines.

Ensure that the voltage class of the VFD is consistent with that of the grid.

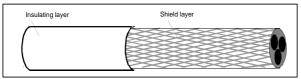
D.5 Cable


D.5.1 Power cable

The sizes of the input power cables and motor cables must comply with local regulations.

- The input power cables and motor cables must be able to carry the corresponding load currents.
- The maximum temperature margin of the motor cables in continuous working cannot be lower than 70°C.
- The conductivity of the PE grounding conductor is the same as that of the phase conductor (for 30kW and higher, it can be slightly reduced).
- ♦ For details about the EMC requirements, see B.6 EMC regulations.

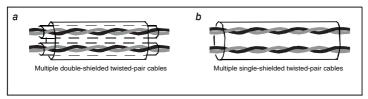
To meet the EMC requirements stipulated in the CE standards, you must use symmetrical shielded cables as motor cables (as shown in the following figure).


Four-core cables can be used as input cables, but symmetrical shielded cables are recommended. Compared with four-core cables, symmetrical shielded cables can reduce electromagnetic radiation as well as the current and loss of the motor cables.

Note: If the electrical conductivity of the motor cable shield layer does not meet the requirements, a separate PE conductor must be used.

To protect the conductors, the cross-sectional area of the shielded cables must be the same as that of the phase conductors if the cable and conductor are made of materials of the same type. This reduces grounding resistance, and thus improves impedance continuity.

To effectively restrict the emission and conduction of radio frequency (RF) interference, the conductivity of the shielded cable must at least be 1/10 of the conductivity of the phase conductor. This requirement can be well met by a copper or aluminum shield layer. The following figure shows the minimum requirement on motor cables of a VFD. The cable must consist of a layer of spiral-shaped copper strips. The denser the shield layer is, the more effectively the electromagnetic interference is restricted.



Cross-section of the cable

Figure D-22 Cable cross section

D.5.2 Control cable

All analog control cables and cables used for frequency input must be shielded cables. Analog signal cables need to be double-shielded twisted-pair cables (as shown in figure a). Use one separate shielded twisted pair for each signal. Do not use the same ground wire for different analog signals.

Power cable arrangement

Figure D-23 Power cable arrangement

For low-voltage digital signals, double-shielded cables are recommended, but shielded or unshielded twisted pairs (as shown in figure b) also can be used. For frequency signals, however, only shielded cables can be used.

Relay cables need to be those with metal braided shield layers.

Keypads need to be connected by using network cables. In complicated electromagnetic environments, shielded network cables are recommended.

Note: Analog signals and digital signals cannot use the same cables, and their cables must be arranged separately.

Dielectric withstand tests have been performed between the main circuit and housing of each VFD before delivery. In addition, the VFD has the internal voltage limiting circuit, which can automatically cut off the test voltage. Do not perform any voltage withstand or insulation resistance tests, such as high-voltage insulation tests or using a megohmmeter to measure the insulation resistance, on the VFD or its components.

Note: Check the insulation conditions of the input power cable of a VFD according to the local regulations before connecting it.

D.5.3 Recommended cable size

Table D-1 AC 3PH 380V(-15%) - 440V(+10%)

VED del		mended ze (mm²)	Connectable cable size (mm²)			Terminal	Fastening	
VFD model	RST UVW	PE	RST UVW	P1 (+)	PB (+)(-)	PE	screw	torque (Nm)
GD350-19-1R5G-4-B	2.5	2.5	2.5–6	2.5-6	2.5–6	2.5–6	M4	1.2-1.5
GD350-19-2R2G-4-B	2.5	2.5	2.5–6	2.5-6	2.5–6	2.5–6	M4	1.2-1.5
GD350-19-004G-4-B	2.5	2.5	2.5–6	2.5-6	2.5–6	2.5–6	M4	1.2-1.5
GD350-19-5R5G-4-B	2.5	2.5	2.5–6	2.5-6	2.5–6	2.5–6	M4	1.2-1.5
GD350-19-7R5G-4-B	4	4	2.5–6	4–6	4–6	2.5–6	M4	1.2-1.5
GD350-19-011G-4-B	6	6	4–10	4–10	4–10	4–10	M5	2.3
GD350-19-015G-4-B	6	6	4–10	4–10	4–10	4–10	M5	2.3
GD350-19-018G-4-B	10	10	10–16	10–16	10–16	10–16	M5	2.3
GD350-19-022G-4-B	16	16	10–16	10–16	10–16	10–16	M5	2.3
GD350-19-030G-4-B	25	16	25-50	25–50	25–50	16–25	M6	2.5
GD350-19-037G-4-B	25	16	25-50	25–50	25–50	16–25	M6	2.5
GD350-19-045G-4-B	35	16	35-70	35–70	35–70	16–35	M8	10
GD350-19-055G-4-B	50	25	35-70	35–70	35–70	16–35	M8	10
GD350-19-075G-4-B	70	35	35-70	35–70	35–70	16–35	M8	10
GD350-19-090G-4-B	95	50	70–120	70–120	70–120	50-70	M12	35
GD350-19-110G-4-B	120	70	70–120	70–120	70–120	50-70	M12	35
GD350-19-132G-4	185	95	95–300	95-300	95–300	95–240		
GD350-19-160G-4	240	120	95–300	95-300	95–300	120-240		
GD350-19-185G-4	95*2P	95	95–150	70–150	70–150	35–95		
GD350-19-200G-4	95*2P	120	95*2P-	95*2P-	95*2P-	120–240		
GD350-19-200G-4	93 ZF	120	150*2P	150*2P	150*2P	120-240		
GD350-19-220G-4	150*2P	150	95*2P-	95*2P-	95*2P-	150–240	450.040	
GD330-19-220G-4	130 21	130	150*2P	150*2P	150*2P	130-240		
GD350-19-250G-4	95*4P	95*2P	95*4P-	95*4P-	95*4P-	95*2P-		
GB000 10 2000 1	00 11	00 Zi	150*4P	150*4P	150*4P	150*2P	Nuts are	e used for
GD350-19-280G-4	95*4P	95*2P	95*4P-	95*4P-	95*4P-	95*2P-		s. You are
02000 10 2000 1	00	00 2.	150*4P	150*4P	150*4P	150*2P		nded to use
GD350-19-315G-4	95*4P	95*4P	95*4P-	95*4P-	95*4P-	95*2P-	a wrench	or sleeve.
			150*4P	150*4P	150*4P	150*2P		
GD350-19-355G-4	95*4P	95*4P	95*4P-	95*4P-	95*4P-	95*2P-		
			150*4P	150*4P	150*4P	150*2P		
GD350-19-400G-4	150*4P	150*2P	95*4P-	95*4P-	95*4P-	95*2P-		
			150*4P	150*4P	150*4P	150*2P	-	
GD350-19-450G-4	150*4P	150*2P	95*4P-	95*4P-	95*4P-	95*2P-		
			150*4P	150*4P	150*4P	150*2P		
GD350-19-500G-4	150*4P	150*2P	95*4P-	95*4P-	95*4P-	95*2P-		
			150*4P	150*4P	150*4P	150*2P		

Note:

• The cables recommended for the main circuit can be used in scenarios where the ambient

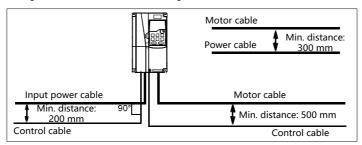
temperature is lower than 40°C, the wiring distance is shorter than 100m, and the current is the rated current.

The terminals P1, (+), PB, and (-) are used to connect to DC reactors and braking accessories.

Table D-2 AC 3PH 520V(-15%) - 690V(+10%)

		mended ze (mm²)	Con	nectable ca	ble size (m	m²)	Terminal	Fastening
VFD model	RST		RST	P1	РВ		screw	torque
	UVW	PE	UVW	(+)	(+) (-)	PE		(Nm)
GD350-19-022G-6	10	10	10–16	6–16	6–10	10–16	M8	9–11
GD350-19-030G-6	10	10	10–16	6–16	6–10	10–16	M8	9–11
GD350-19-037G-6	16	16	16–25	16–25	6–10	16–25	M8	9–11
GD350-19-045G-6	16	16	16–25	16–35	16–25	16–25	M8	9–11
GD350-19-055G-6	25	16	16–25	16–35	16–25	16–25	M10	18–23
GD350-19-075G-6	35	16	35–50	25–50	25-50	16–50	M10	18–23
GD350-19-090G-6	35	16	35–50	25–50	25-50	16–50	M10	18–23
GD350-19-110G-6	50	25	50-95	50-95	25–95	25–95	M10	18–23
GD350-19-132G-6	70	35	70–95	70–95	25–95	35–95	M10	18–23
GD350-19-160G-6	95	50	95–150	95–150	25-150	50-150		
GD350-19-185G-6	95	50	95–150	95–150	25-150	50-150		
GD350-19-200G-6	120	70	120-300	120-300	35–300	70-240		
GD350-19-220G-6	185	95	120-300	120-300	35–300	95-240		
GD350-19-250G-6	185	95	185–300	185–300	35–300	95-240		
GD350-19-280G-6	240	120	240-300	240-300	70–300	120-240		
CD250 40 2450 0	05*0D	400	95*2P	95*2P	95*2P	400 200		
GD350-19-315G-6	95*2P	120	-150*2P	-150*2P	-150*2P	120–300		
GD350-19-355G-6	95*2P	150	95*2P	95*2P	95*2P	150–300	Nuts are	used for
GD350-19-355G-6	95 ZP	150	-150*2P	-150*2P	-150*2P	150-300	terminal	s. You are
GD350-19-400G-6	150*2P	150	150*2P	95*2P	95*2P	150–300	recommen	ded to use a
GD330-19-400G-0	130 21	130	-300*2P	-150*2P	-150*2P	130-300	wrench	or sleeve.
GD350-19-450G-6	95*4P	95*2P	95*4P	95*4P	95*4P	95*2P		
GD300 13 430G 0	33 41	33 Zi	-150*4P	-150*4P	-150*4P	-150*2P		
GD350-19-500G-6	95*4P	95*2P	95*4P	95*4P	95*4P	95*2P		
22000 10 0000 0	30 -11	30 21	-150*4P	-150*4P	-150*4P	-150*2P		
GD350-19-560G-6	95*4P	95*4P	95*4P	95*4P	95*4P	95*4P		
			-150*4P	-150*4P	-150*4P	-150*4P		
GD350-19-630G-6	150*4P	150*2P	150*4P	150*4P	150*4P	150*4P		
11111 70 0000 0		2.	-300*4P	-300*4P	-300*4P	-240*4P		

Note:


- The cables recommended for the main circuit can be used in scenarios where the ambient temperature is lower than 40°C, the wiring distance is shorter than 100m, and the current is the rated current.
- The terminals P1, (+), PB, and (-) are used to connect to DC reactors and braking accessories.

D.5.4 Cable arrangement

Motor cables must be arranged away from other cables. The motor cables of several inverters can be arranged in parallel. It is recommended that you arrange the motor cables, input power cables, and control cables separately in different trays. The output dU/dt of the inverters may increase electromagnetic interference on other cables. Do not arrange other cables and the motor cables in parallel.

If a control cable and power cable must cross each other, ensure that the angle between them is 90°.

The cable trays must be connected properly and well grounded. Aluminum trays can implement local equipotential. Figure D-24 shows the cable routing.

Cable arrangement distances

Figure D-24 Cable routing distance

D.5.5 Insulation inspection

Check the motor and the insulation conditions of the motor cable before running the motor.

- Ensure that the motor cable is connected to the motor, and then remove the motor cable from the U, V, and W output terminals of the VFD.
- Use a megohmmeter of 500V DC to measure the insulation resistance between each phase conductor and the protection grounding conductor. For details about the insulation resistance of the motor, see the description provided by the manufacturer.

Note: The insulation resistance is reduced if it is damp inside the motor. If it may be damp, you need to dry the motor and then measure the insulation resistance again.

D.6 Breaker and electromagnetic contactor

You need to add a fuse to prevent overload. You need to add a fuse to prevent overload.

You need to configure a manually manipulated molded case circuit breaker (MCCB) between the AC power supply and VFD. The breaker must be locked in the open state to facilitate installation and inspection. The capacity of the breaker needs to be 1.5 to 2 times the VFD rated input current.

According to the working principle and structure of breakers, if the manufacturer's regulation is not followed, hot ionized gases may escape from the breaker enclosure

when a short-circuit occurs. To ensure safe use, exercise extra caution when installing and placing the breaker. Follow the manufacturer's instructions.

To ensure safety, you can configure an electromagnetic contactor on the input side to control the switch-on and switch-off of the main circuit power, so that the input power supply of the VFD can be effectively cut off when a system fault occurs.

Table D-3 AC 3PH 380V(-15%) - 440V(+10%)

VED model Fues (A) Breeker (A) Contactor roted current (A)					
VFD model	Fuse (A)	Breaker (A)	Contactor rated current (A)		
GD350-19-1R5G-4-B	10	6	10		
GD350-19-2R2G-4-B	10	10	10		
GD350-19-004G-4-B	20	20	16		
GD350-19-5R5G-4-B	35	25	16		
GD350-19-7R5G-4-B	40	32	25		
GD350-19-011G-4-B	50	50	32		
GD350-19-015G-4-B	60	63	50		
GD350-19-018G-4-B	70	63	63		
GD350-19-022G-4-B	90	80	80		
GD350-19-030G-4-B	125	100	95		
GD350-19-037G-4-B	125	125	120		
GD350-19-045G-4-B	150	140	135		
GD350-19-055G-4-B	200	180	170		
GD350-19-075G-4-B	250	225	230		
GD350-19-090G-4-B	300	250	280		
GD350-19-110G-4-B	350	315	315		
GD350-19-132G-4	400	400	380		
GD350-19-160G-4	500	500	450		
GD350-19-185G-4	600	500	580		
GD350-19-200G-4	600	630	580		
GD350-19-220G-4	700	630	630		
GD350-19-250G-4	800	700	700		
GD350-19-280G-4	1000	800	780		
GD350-19-315G-4	1000	1000	900		
GD350-19-355G-4	1000	1000	960		
GD350-19-400G-4	1200	1000	1035		
GD350-19-450G-4	1200	1250	1222		
GD350-19-500G-4	1400	1250	1290		

Note: The accessory specifications described in the preceding table are ideal values. You can select accessories based on the actual market conditions, but try not to use those with lower

values.

Table D-4 AC 3PH 520V(-15%) - 690V(+10%)

VFD model	Fuse (A)	Breaker (A)	Contactor rated current (A)
GD350-19-022G-6	105	63	50
GD350-19-030G-6	105	63	50
GD350-19-037G-6	114	100	63
GD350-19-045G-6	138	100	80
GD350-19-055G-6	186	125	95
GD350-19-075G-6	270	200	135
GD350-19-090G-6	270	200	135
GD350-19-110G-6	315	200	170
GD350-19-132G-6	420	250	230
GD350-19-160G-6	480	315	280
GD350-19-185G-6	480	315	280
GD350-19-200G-6	630	400	315
GD350-19-220G-6	720	400	380
GD350-19-250G-6	720	400	380
GD350-19-280G-6	870	630	450
GD350-19-315G-6	1110	630	580
GD350-19-355G-6	1110	630	580
GD350-19-400G-6	1230	800	630
GD350-19-450G-6	1470	960	735
GD350-19-500G-6	1500	1000	780
GD350-19-560G-6	1740	1200	900
GD350-19-630G-6	2010	1380	1035

Note: The accessory specifications described in the preceding table are ideal values. You can select accessories based on the actual market conditions, but try not to use those with lower values.

D.7 Reactor

To enhance grid protection, reduce harmonic interference from the VFD to the grid, and improve input power factor, consider configuring external DC reactors, input reactors, or passive harmonic filters based on your specific application needs.

If you want to use long cables between the VFD and the motor, select external output reactors, dv/dt attenuation filters, or sine-wave filters based on the motor cable length. This helps mitigate excessive dv/dt, reducing voltage stress on the motor windings as well as protecting them, and extending the motor's lifespan. Refer to the table below for recommended output filter selections according to motor

cable length.

Table D-5 Reactors for AC 3 PH 380V (-15%)-440V (+10%)

Non-shielded cable length	50m–150m	150m–450m	450m–1000m
Shielded cable length	30m–100m	100m–230m	230m–500m
	Output reactor (1%)	1	/
Output reactor category	/	dv/dt filter	/
3.7	/	1	Sine-wave filter

D.7.1 AC 3PH 380V(-15%)-440V(+10%)

Table D-6 Reactors for 380V

VFD power	Input reactor	DC reactor	Output reactor
1.5kW	GDL-ACL0005-4CU	-	GDL-OCL0005-4CU
2.2kW	GDL-ACL0006-4CU	-	GDL-OCL0006-4CU
4kW	GDL-ACL0014-4CU	-	GDL-OCL0010-4CU
5.5kW	GDL-ACL0020-4CU	-	GDL-OCL0014-4CU
7.5kW	GDL-ACL0025-4CU	-	GDL-OCL0020-4CU
11kW	GDL-ACL0035-4AL	-	GDL-OCL0025-4CU
15kW	GDL-ACL0040-4AL	-	GDL-OCL0035-4AL
18.5kW	GDL-ACL0051-4AL	Standard	GDL-OCL0040-4AL
22kW	GDL-ACL0051-4AL	Standard	GDL-OCL0050-4AL
30kW	GDL-ACL0070-4AL	Standard	GDL-OCL0060-4AL
37kW	GDL-ACL0090-4AL	Standard	GDL-OCL0075-4AL
45kW	GDL-ACL0110-4AL	Standard	GDL-OCL0092-4AL
55kW	GDL-ACL0150-4AL	Standard	GDL-OCL0115-4AL
75kW	GDL-ACL0150-4AL	Standard	GDL-OCL0150-4AL
90kW	GDL-ACL0220-4AL	Standard	GDL-OCL0220-4AL
110kW	GDL-ACL0220-4AL	Standard	GDL-OCL0220-4AL
132kW	GDL-ACL0265-4AL	GDL-DCL0300-4AL	GDL-OCL0265-4AL
160kW	GDL-ACL0330-4AL	GDL-DCL0365-4AL	GDL-OCL0330-4AL
185kW	GDL-ACL0390-4AL	GDL-DCL0455-4AL	GDL-OCL0400-4AL
200kW	GDL-ACL0390-4AL	GDL-DCL0455-4AL	GDL-OCL0400-4AL
220kW	GDL-ACL0450-4AL	GDL-DCL0505-4AL	GDL-OCL0450-4AL
250kW	GDL-ACL0500-4AL	GDL-DCL0550-4AL	GDL-OCL0500-4AL
280kW	GDL-ACL0500-4AL	GDL-DCL0675-4AL	GDL-OCL0560-4AL

VFD power	Input reactor	DC reactor	Output reactor
315kW	GDL-ACL0580-4AL	GDL-DCL0675-4AL	GDL-OCL0660-4AL
355kW	Standard	GDL-DCL0810-4AL	GDL-OCL0660-4AL
400kW	Standard	GDL-DCL0810-4AL	GDL-OCL0720-4AL
450kW	Standard	GDL-DCL1000-4AL	GDL-OCL0820-4AL
500kW	Standard	GDL-DCL1000-4AL	GDL-OCL1000-4AL

Note:

- The rated input voltage drop of input reactor is designed to 1.5%.
- The rated output voltage drop of output reactor is designed to 1%.
- For the model selection for paralleled VFDs, see the operation manual for Goodrive series VFDs in parallel connection.

Table D-7 Filter model selection for 380V VFDs

	Input filter	Outp	out filter
VFD power	Passive harmonic filter	dv/dt filter	Sine-wave filter
1.5kW	GDL-H0006-4AL	GDL-DUL0005-4CU	GDL-OSF0005-4AL
2.2kW	GDL-H0006-4AL	GDL-DUL0005-4CU	GDL-OSF0005-4AL
4kW	GDL-H0014-4AL	GDL-DUL0010-4CU	GDL-OSF0010-4AL
5.5kW	GDL-H0020-4AL	GDL-DUL0014-4CU	GDL-OSF0014-4AL
7.5kW	GDL-H0025-4AL	GDL-DUL0020-4CU	GDL-OSF0020-4AL
11kW	GDL-H0032-4AL	GDL-DUL0025-4CU	GDL-OSF0025-4AL
15kW	GDL-H0040-4AL	GDL-DUL0032-4CU	GDL-OSF0032-4AL
18.5kW	GDL-H0047-4AL	GDL-DUL0040-4AL	GDL-OSF0040-4AL
22kW	GDL-H0056-4AL	GDL-DUL0045-4AL	GDL-OSF0045-4AL
30kW	GDL-H0070-4AL	GDL-DUL0060-4AL	GDL-OSF0060-4AL
37kW	GDL-H0080-4AL	GDL-DUL0075-4AL	GDL-OSF0075-4AL
45kW	GDL-H0100-4AL	GDL-DUL0100-4AL	GDL-OSF0095-4AL
55kW	GDL-H0130-4AL	GDL-DUL0120-4AL	GDL-OSF0120-4AL
75kW	GDL-H0160-4AL	GDL-DUL0150-4AL	GDL-OSF0150-4AL
90kW	GDL-H0190-4AL	GDL-DUL0180-4AL	GDL-OSF0180-4AL
110kW	GDL-H0225-4AL	GDL-DUL0220-4AL	GDL-OSF0220-4AL
132kW	GDL-H0265-4AL	GDL-DUL0260-4AL	GDL-OSF0260-4AL
160kW	GDL-H0320-4AL	GDL-DUL0320-4AL	GDL-OSF0320-4AL
185kW	GDL-H0400-4AL	GDL-DUL0400-4AL	GDL-OSF0400-4AL
200kW	GDL-H0400-4AL	GDL-DUL0400-4AL	GDL-OSF0400-4AL
220kW	GDL-H0485-4AL	GDL-DUL0480-4AL	GDL-OSF0480-4AL

	Input filter	Outp	out filter
VFD power	Passive harmonic filter	dv/dt filter	Sine-wave filter
250kW	GDL-H0485-4AL	GDL-DUL0480-4AL	GDL-OSF0480-4AL
280kW	GDL-H0545-4AL	GDL-DUL0540-4AL	GDL-OSF0600-4AL
315kW	GDL-H0610-4AL	GDL-DUL0600-4AL	GDL-OSF0600-4AL
355kW	GDL-H0800-4AL	GDL-DUL0800-4AL	GDL-OSF0800-4AL
400kW	GDL-H0800-4AL	GDL-DUL0800-4AL	GDL-OSF0800-4AL
450kW	GDL-H1000-4AL	GDL-DUL1000-4AL	GDL-OSF1000-4AL
500kW	GDL-H1000-4AL	GDL-DUL1000-4AL	GDL-OSF1000-4AL

Note: The input voltage of the passive harmonic filter for 380V VFD is 380-400V, 50Hz.

D.7.2 AC 3PH 520V(-15%)-690V(+10%)

Table D-8 Filter model selection for 660V VFDs

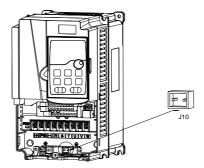
VFD power	Input reactor	DC reactor	Output reactor
22kW	GDL-ACL0045-6CU	GDL-DCL0045-6CU	GDL-OCL0045-6CU
30kW	GDL-ACL0045-6CU	GDL-DCL0050-6CU	GDL-OCL0045-6CU
37kW	GDL-ACL0050-6CU	GDL-DCL0080-6CU	GDL-OCL0045-6CU
45kW	GDL-ACL0060-6CU	GDL-DCL0080-6CU	GDL-OCL0060-6CU
55kW	GDL-ACL0090-6CU	GDL-DCL0080-6CU	GDL-OCL0090-6CU
75kW	GDL-ACL0090-6CU	GDL-DCL0165-6CU	GDL-OCL0090-6CU
90kW	GDL-ACL0110-6CU	GDL-DCL0165-6CU	GDL-OCL0110-6CU
110kW	GDL-ACL0150-6CU	GDL-DCL0165-6CU	GDL-OCL0150-6CU
132kW	GDL-ACL0150-6CU	GDL-DCL0265-6CU	GDL-OCL0150-6CU
160kW	GDL-ACL0200-6CU	GDL-DCL0265-6CU	GDL-OCL0200-6CU
185kW	GDL-ACL0200-6CU	GDL-DCL0265-6CU	GDL-OCL0200-6CU
200kW	GDL-ACL0250-6CU	GDL-DCL0330-6CU	GDL-OCL0250-6CU
220kW	GDL-ACL0250-6CU	GDL-DCL0330-6CU	GDL-OCL0250-6CU
250kW	GDL-ACL0300-6CU	GDL-DCL0330-6CU	GDL-OCL0300-6CU
280kW	GDL-ACL0300-6CU	GDL-DCL0475-6CU	GDL-OCL0300-6CU
315kW	GDL-ACL0400-6CU	GDL-DCL0475-6CU	GDL-OCL0400-6CU
355kW	GDL-ACL0400-6CU	GDL-DCL0475-6CU	GDL-OCL0400-6CU
400kW	Standard	GDL-DCL0600-6CU	GDL-OCL0480-6CU
450kW	Standard	GDL-DCL0600-6CU	GDL-OCL0480-6CU
500kW	Standard	GDL-DCL0750-6CU	GDL-OCL0600-6CU
560kW	Standard	GDL-DCL0750-6CU	GDL-OCL0600-6CU
630kW	Standard	GDL-DCL0805-6CU	GDL-OCL0800-6CU

Note:

- The rated input voltage drop of input reactor is designed to 1.5%.
- The rated output voltage drop of output reactor is designed to 1%.
- For the model selection for paralleled VFDs, see the operation manual for Goodrive series
 VFDs in parallel connection.

Table D-9 Filter model selection for 660V VFDs

	Input filter	Outp	ut filter
VFD power	Passive harmonic filter	dv/dt filter	Sine-wave filter
22kW	GDL-H0035-6AL	GDL-DUL0030-6CU	GDL-OSF0030-6CU
30kW	GDL-H0047-6AL	GDL-DUL0045-6CU	GDL-OSF0045-6CU
37kW	GDL-H0047-6AL	GDL-DUL0045-6CU	GDL-OSF0045-6CU
45kW	GDL-H0060-6AL	GDL-DUL0065-6CU	GDL-OSF0065-6CU
55kW	GDL-H0090-6AL	GDL-DUL0065-6CU	GDL-OSF0065-6CU
75kW	GDL-H0090-6AL	GDL-DUL0090-6CU	GDL-OSF0090-6CU
90kW	GDL-H0110-6AL	GDL-DUL0110-6CU	GDL-OSF0110-6CU
110kW	GDL-H0150-6AL	GDL-DUL0150-6CU	GDL-OSF0150-6CU
132kW	GDL-H0150-6AL	GDL-DUL0150-6CU	GDL-OSF0150-6CU
160kW	GDL-H0200-6AL	GDL-DUL0220-6CU	GDL-OSF0200-6CU
185kW	GDL-H0200-6AL	GDL-DUL0220-6CU	GDL-OSF0200-6CU
200kW	GDL-H0250-6AL	GDL-DUL0220-6CU	GDL-OSF0250-6CU
220kW	GDL-H0250-6AL	GDL-DUL0260-6CU	GDL-OSF0250-6CU
250kW	GDL-H0300-6AL	GDL-DUL0320-6CU	GDL-OSF0300-6CU
280kW	GDL-H0300-6AL	GDL-DUL0320-6CU	GDL-OSF0300-6CU
315kW	GDL-H0400-6AL	GDL-DUL0400-6CU	GDL-OSF0400-6CU
355kW	GDL-H0400-6AL	GDL-DUL0400-6CU	GDL-OSF0400-6CU
400kW	GDL-H0480-6AL	GDL-DUL0480-6CU	GDL-OSF0480-6CU
450kW	GDL-H0480-6AL	GDL-DUL0480-6CU	GDL-OSF0480-6CU
500kW	GDL-H0600-6AL	GDL-DUL0600-6CU	GDL-OSF0600-6CU
560kW	GDL-H0600-6AL	GDL-DUL0600-6CU	GDL-OSF0600-6CU
630kW	GDL-H0800-6AL	GDL-DUL0800-6CU	GDL-OSF0800-6CU


Note: The input voltage of the passive harmonic filter for 660V VFD is 660-690V, 50Hz.

D.8 Filter

J10 is not connected in factory for the 380V 110kW and lower VFD models. Connect the J10 packaged with the manual if the requirements of level C3 need to be met. J10 is connected in factory for the 380V 132kW and higher VFD models, all of which meet the requirements of level C3.

Disconnect J10 in any of the following situations:

- The EMC filter is applicable to the neutral-grounded grid system. If it is used for the IT grid system (that is, non-neutral grounded grid system), disconnect J10.
- If leakage protection occurs during configuration of a residual-current circuit breaker, disconnect J10.

Note: Do not connect C3 filters in IT power systems.

Interference filters on the input side can reduce the VFD interference on the surrounding devices.

Noise filters on the output side can decrease the radio noise caused by the cables between VFDs and motors and the leakage current of conducting wires.

INVT provides some of the filters for you to choose.

D.8.1 Filter model description

Field	Description
Α	FLT: VFD filter series
	Filter type
В	P: Power input filter
	L: Output filter
	Voltage class
С	04: AC 3PH 380V(-15%)-440V(+10%)
	06: AC 3PH 520V(-15%)-690V(+10%)
D	3-digit code indicating the rated current. For example, 015 indicates 15 A.
	Filter performance
Е	L: General
	H: High-performance
F	Filter application environment
	A: First environment (IEC61800-3), category C1 (EN 61800-3)

Field	Description
	B: First environment (IEC61800-3), category C2 (EN 61800-3)
	C: Second environment (IEC61800-3), category C3 (EN 61800-3)

D.8.2 Filter model selection

Table D-10 AC 3PH 380V(-15%) - 440V(+10%)

Table D-10 AO 3111 300 V(-1070) - 440 V(+1070)				
VFD model	Input filter	Output filter		
GD350-19-1R5G-4-B	FLT-P04006L-B	FLT-L04006L-B		
GD350-19-2R2G-4-B	. 2	. 1. 20.0002 2		
GD350-19-004G-4-B	FLT-P04016L-B	FLT-L04016L-B		
GD350-19-5R5G-4-B	1211040102 B	121 2040102 3		
GD350-19-7R5G-4-B	FLT-P04032L-B	FLT-L04032L-B		
GD350-19-011G-4-B	1 E1-1 04032E-B	1 21-20-0322-8		
GD350-19-015G-4-B	FLT-P04045L-B	FLT-L04045L-B		
GD350-19-018G-4-B	FLI-F04043L-B	FLI-LU4U43L-B		
GD350-19-022G-4-B	FLT-P04065L-B	FLT-L04065L-B		
GD350-19-030G-4-B	FLI-P04003L-B	FLI-LU4000L-D		
GD350-19-037G-4-B	FLT-P04100L-B	ELT I 044001 B		
GD350-19-045G-4-B	FL1-P04100L-B	FLT-L04100L-B		
GD350-19-055G-4-B	FLT-P04150L-B	FLT-L04150L-B		
GD350-19-075G-4-B	FL1-P04130L-B	FL1-L04130L-B		
GD350-19-090G-4-B				
GD350-19-110G-4-B	FLT-P04240L-B	FLT-L04240L-B		
GD350-19-132G-4				
GD350-19-160G-4				
GD350-19-185G-4	FLT-P04400L-B	FLT-L04400L-B		
GD350-19-200G-4				
GD350-19-220G-4				
GD350-19-250G-4	FLT-P04600L-B	FLT-L04600L-B		
GD350-19-280G-4				
GD350-19-315G-4				
GD350-19-355G-4	FLT-P04800L-B	FLT-L04800L-B		
GD350-19-400G-4				
GD350-19-450G-4	FIT DO MARKET D	FI T I 0 440001 B		
GD350-19-500G-4	FLT-P041000L-B	FLT-L041000L-B		

Note:

- The input EMI meets the C2 requirements after an input filter is configured.
- The preceding table lists only external accessories. You need to specify whether external or

built-in accessories are needed in your purchase order.

Table D-11 AC 3PH 520V(-15%) - 690V(+10%)

` , , , , , , , , , , , , , , , , , , ,				
VFD model	Input filter	Output filter		
GD350-19-022G-6				
GD350-19-030G-6	FLT-P06050H-B	FLT-L06050H-B		
GD350-19-037G-6				
GD350-19-045G-6				
GD350-19-055G-6	FLT-P06100H-B	FLT-L06100H-B		
GD350-19-075G-6	FL1-P00100H-B	FLI-LUO IUUM-B		
GD350-19-090G-6				
GD350-19-110G-6				
GD350-19-132G-6		FI T I OCCOUNT D		
GD350-19-160G-6	FLT-P06200H-B	FLT-L06200H-B		
GD350-19-185G-6				
GD350-19-200G-6				
GD350-19-220G-6	FLT DOCCOOLL D	FI T I OCCOUNT D		
GD350-19-250G-6	FLT-P06300H-B	FLT-L06300H-B		
GD350-19-280G-6				
GD350-19-315G-6	FLT DOC 400LL D	FIT 00 400 1 B		
GD350-19-355G-6	FLT-P06400H-B	FLT-L06400H-B		
GD350-19-400G-6				
GD350-19-450G-6				
GD350-19-500G-6	FLT-P061000H-B	FLT-L061000H-B		
GD350-19-560G-6				
GD350-19-630G-6				

Note:

- The input EMI meets the C2 requirements after an input filter is configured.
- The preceding table lists only external accessories. You need to specify whether external or built-in accessories are needed in your purchase order.

D.9 Braking system

D.9.1 Braking component selection

When the VFD driving a high-inertia load decelerates or needs to decelerate abruptly, the motor runs in the power generation state and transmits the load-carrying energy to the DC circuit of the VFD, causing the bus voltage of the VFD to rise. If the bus voltage exceeds a specific value, the VFD reports an overvoltage fault. To prevent this from happening, you need to configure braking components.

The design, installation, commissioning, and operation of the device must be performed by trained and qualified professionals.

- Follow all the "Warning" instructions during the operation. Otherwise, major physical injuries or property loss may be caused.
- Only qualified electricians are allowed to perform the wiring. Otherwise, damage to the VFD or braking components may be caused.
- Read the braking resistor or unit instructions carefully before connecting them to the VFD.
- Connect braking resistors only to the terminals PB and (+), and braking units only to the terminals (+) and (-). Do not connect them to other terminals. Otherwise, damage to the braking circuit and VFD and fire may be caused.

Connect the braking components to the VFD according to the wiring diagram. If the wiring is not properly performed, damage to the VFD or other devices may be caused.

The 380V 110kW and lower VFD models are equipped with built-in braking units, and the 380V 132kW and higher VFD models need to be configured with external braking units. Select braking resistors according to the specific requirements on site.

Table D-12 Braking units for AC 3PH 380V(-15%)-440V(+10%)

	Braking unit				Braking re	esistor	
VFD power	Braking unit model	braking	Max. peak braking current (A)	100% braking torque matching resistance (Ω)	Lifting oriented recommended min. power (kW)	oriented recommended	Min. allowed resistance (Ω)
1.5kW		4	4.8	326	≥0.75	≥0.4	170
2.2kW		5.4	6.5	222	≥1.1	≥0.5	130
4kW		8.8	10.5	122	≥2	≥1	80
5.5kW		11.6	14	89	≥2.8	≥1.4	60
7.5kW		14.9	17.8	65	≥3.8	≥1.9	47
11kW		22.6	27	44	≥5.5	≥2.8	31
15kW		30.4	36.5	32	≥7.5	≥3.8	23
18.5kW	Built-in braking	36.8	44.2	27	≥9	≥4.5	19
22kW	unit	41	49.4	22	≥11	≥5.5	17
30kW		54	65	17	≥15	≥7.5	13
37kW		63.6	76.4	13	≥18.5	≥9	11
45kW		80	96	10	≥22.5	≥11	6.4
55kW		100	120	8	≥27.5	≥13	6.4
75kW		110	132	6.5	≥37	≥18	6.4
90kW		160	190	5.4	≥45	≥22	4.4
110kW		220	260	4.5	≥55	≥27	3.2
132kW	DBL	J100H-220-4	ļ	3.7	≥66	≥33	3.2
160kW	DBU100H-320-4			3.1	≥80	≥40	0.0
185kW			1	2.8	≥92	≥46	2.2

	Br	aking unit			Braking re	esistor	
VFD power	model	continuous braking	braking current (A)	100% braking torque matching resistance (Ω)	Lifting oriented recommended min. power (kW)	oriented recommended	Min. allowed resistance (Ω)
200kW				2.5	≥100	≥50	
220kW	DBU100H-400-4		2.2	≥110	≥55	4.0	
250kW			2	≥125	≥62	1.8	
280kW				3.6*2	≥70*2	≥35*2	
315kW	Two DBU100H-320-4		2.4	3.2*2	≥80*2	≥40*2	0.010
355kW			2.8*2	≥90*2	≥45*2	2.2*2	
400kW			2.4*2	≥100*2	≥50*2		
450kW	Two DBU100H-400-4		2.0*2	≥125*2	≥62*2	1.8*2	
500kW			2.0"2	≥125″2	≥02"2	1.0"2	

Note:

- Select braking resistors according to the resistance and power data provided by INVT. Users can choose different resistance values and powers according to their actual situation, but the resistance value must not be less than the minimum allowable braking resistance value in the table, otherwise the braking unit may be burned out. The selection of braking resistor needs to be determined based on the power generated by the motor in the actual application system, which is related to the system inertia, deceleration time, and potential energy load energy. The larger the system inertia, the shorter the deceleration time, and the more frequent the braking, the braking resistor with larger power and smaller resistance value needs to be selected.
- When the grid voltage is different, users can adjust the dynamic braking threshold voltage. If the threshold voltage needs to be raised, the corresponding braking resistance needs to be increased.
- The recommended minimum power of the braking resistor mentioned above refers to the rated power that the resistor can operate for a long time under natural cold conditions. If there is a cooling fan on site, the power of the braking resistor can be slightly reduced.
- When using an external braking unit, set the brake voltage class of the braking unit properly by referring to the manual of the dynamic braking unit. If the voltage class is set incorrectly, the VFD may not run properly.
- In application to the crane industry, the resistance is recommended to be less than the 100% torque matching resistance but greater than the min. allowed braking resistance.

Do not use braking resistors whose resistance is lower than the specified minimum resistance. The VFD does not provide protection against overcurrent caused by resistors with low resistance.

External braking units need to be configured for the 660V models. Select braking resistors according to the specific requirements (such as the braking torque and braking usage) on site.

Table D-13 Braking units for AC 3PH 520V(-15%)-690V(+10%)

	Table 5 10 Braking anito for 710 20 V (1070) 030 V (11070)					
VFD power	Braking unit model	Resistance applicable for 100% braking torque (Ω)	Lifting oriented recommended min. power (kW)	Moving oriented recommended min. power (kW)	Min. allowed braking resistance (Ω)	
22kW		55	11	5.5		
30kW		40.3	15	7.5		
37kW		32.7	18.5	9		
45kW	DD1140011 440 0	26.9	23	11.5	40	
55kW	DBU100H-110-6	22	27.5	13.5	10	
75kW		16.1	37.5	19		
90kW		13.4	45	22		
110kW		11	55	27.5		
132kW	DD1140011 400 0	9.2	66	33	0.0	
160kW	DBU100H-160-6	7.6	80	40	6.9	
185kW		6.5	93	46		
200kW	DBU100H-220-6	6.1	100	50	5	
220kW		5.5	110	55		
250kW		4.8	125	62		
280kW	DBU100H-320-6	4.3	140	70	3.4	
315kW		3.8	158	78		
355kW	DDI 14.0011, 400, C	3.5	178	89	0.0	
400kW	DBU100H-400-6	3	200	100	2.8	
450kW 500kW	Two	4.8*2	125*2	63*2	0.4*0	
560kW	DBU100H-320-6	4.3*2	140*2	70*2	3.4*2	
630kW		3.8*2	315*2	158*2		

Note:

Select braking resistors according to the resistance and power data provided by INVT. Users can choose different resistance values and powers according to their actual situation, but the resistance value must not be less than the minimum allowable braking resistance value in the table, otherwise the braking unit may be burned out. The selection of braking resistor needs to be determined based on the power generated by the motor in the actual application system, which is related to the system inertia, deceleration time, and potential energy load energy. The larger the system inertia, the shorter the deceleration time, and the more frequent the braking, the braking

resistor with larger power and smaller resistance value needs to be selected.

- When the grid voltage is different, users can adjust the dynamic braking threshold voltage. If the
 threshold voltage needs to be raised, the corresponding braking resistance needs to be
 increased.
- The recommended minimum power of the braking resistor mentioned above refers to the rated power that the resistor can operate for a long time under natural cold conditions. If there is a cooling fan on site, the power of the braking resistor can be slightly reduced.
- When using an external braking unit, set the brake voltage class of the braking unit properly by referring to the manual of the dynamic braking unit. If the voltage class is set incorrectly, the VFD may not run properly.
- In application to the crane industry, the resistance is recommended to be less than the 100% torque matching resistance but greater than the min. allowed braking resistance.

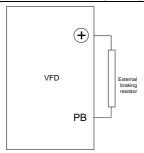
Do not use braking resistors whose resistance is lower than the specified minimum resistance. The VFD does not provide protection against overcurrent caused by resistors with low resistance.

D.9.2 Braking resistor cable selection

Braking resistor cables should be shielded cables.

D.9.3 Braking resistor installation

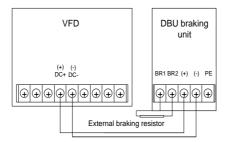
All resistors must be installed in places with good cooling conditions.



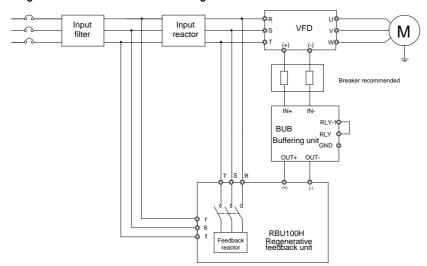
The materials near the braking resistor or braking unit must be flame resistant. since the surface temperature of the resistor is high and air flowing from the resistor is of hundreds of degrees Celsius. Prevent any materials from coming into contact with the resistor.

Braking resistor installation

- ♦ The 380V 110kW and lower VFD models need only external braking resistors.
- PB and (+) are the terminals for connecting braking resistors.


Braking unit installation

- All 660V VFD models need external braking units.
- (+) and (-)are the terminals for connecting braking units.


The connection cable length between the (+) and (-) terminals of the VFD and those of a braking unit must be shorter than 5m, and the connection cable length between the BR1 and BR2 terminals of a braking unit and the terminals of a braking resistor must be shorter than 10m.

Single unit connection:

D.10 Regenerative unit

D.10.1 Regenerative unit installation and wiring

Note: For details about the use and model selection of input filters, input reactors, and regenerative reactors, see the manual for RBU100H regenerative energy unit.

D.10.2 Regenerative unit

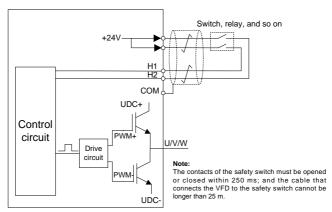
The following table lists the buffer units and regenerative units matching 380V VFDs.

VFD model	Buffer unit	Regenerative unit
GD350-19-022G-4-B	-	RBU100H-022-4
GD350-19-030G-4-B		RBU100H-030-4
GD350-19-037G-4-B		RBU100H-045-4
GD350-19-045G-4-B	BUB-110-4	RBU100H-045-4
GD350-19-055G-4-B		RBU100H-055-4
GD350-19-075G-4-B		RBU100H-090-4
GD350-19-090G-4-B		RBU100H-090-4
GD350-19-110G-4-B	DUD OF O	RBU100H-110-4
GD350-19-132G-4		RBU100H-132-4
GD350-19-160G-4	BUB-250-4	RBU100H-160-4
GD350-19-185G-4		RBU100H-200-4
GD350-19-200G-4		RBU100H-200-4
GD350-19-220G-4		RBU100H-250-4
GD350-19-250G-4	Two BUB-250-4	RBU100H-250-4
GD350-19-280G-4	TWO DOD-250-4	Two RBU100H-160-4
GD350-19-315G-4		Two RBU100H-160-4
GD350-19-355G-4		Two RBU100H-200-4
GD350-19-400G-4		Two RBU100H-200-4
GD350-19-450G-4	Three BUB-250-4	Two RBU100H-250-4
GD350-19-500G-4		Two RBU100H-250-4

The following table lists the buffer units and regenerative units matching 660V VFDs.

VFD model	Buffer unit	Regenerative unit
GD350-19-022G-6		RBU100H-055-6
GD350-19-030G-6		RBU100H-055-6
GD350-19-037G-6		RBU100H-055-6
GD350-19-045G-6		RBU100H-055-6
GD350-19-055G-6	DUD 400 0	RBU100H-055-6
GD350-19-075G-6	BUB-160-6	RBU100H-090-6
GD350-19-090G-6		RBU100H-090-6
GD350-19-110G-6		RBU100H-160-6
GD350-19-132G-6		RBU100H-160-6
GD350-19-160G-6		RBU100H-160-6
GD350-19-185G-6		RBU100H-200-6
GD350-19-200G-6		RBU100H-200-6
GD350-19-220G-6	BUB-400-6	RBU100H-315-6
GD350-19-250G-6		RBU100H-315-6
GD350-19-280G-6		RBU100H-315-6

VFD model	Buffer unit	Regenerative unit
GD350-19-315G-6		RBU100H-315-6
GD350-19-355G-6		RBU100H-400-6
GD350-19-400G-6		RBU100H-400-6
GD350-19-450G-6		Two RBU100H-315-6
GD350-19-500G-6	Two BUB-400-6	Two RBU100H-315-6
GD350-19-560G-6		Two RBU100H-315-6
GD350-19-630G-6		Two RBU100H-315-6


Note:

- For details about the use instructions of buffer units and regenerative units, see the manuals for BUB series buffer units and RBU100H regenerative units.
- When the VFD uses two or more buffer units, the buffer units must be used in parallel.
- When the VFD uses two or more regenerative units, the regenerative units must be used in parallel.

Appendix E STO function description

Reference standards: IEC 61508-1, IEC 61508-2, IEC 61508-3, IEC 61508-4, IEC 62061, ISO 13849-1, and IEC 61800-5-2.

You can enable the safe torque off (STO) function to prevent unexpected startups when the main power supply of the drive is not switched off. The STO function switches off the drive output by turning off the drive signals to prevent unexpected startups of the motor (see the following figure). After the STO function is enabled, you can perform some-time operations (such as non-electrical cleaning in the lathe industry) and maintain the non-electrical components of the device without switching off the drive.

E.1 STO function logic table

The following table describes the input states and corresponding faults of the STO function.

STO input state	Corresponding fault
	The STO function is triggered, and the drive stops running.
H1 and H2 opened simultaneously	Fault code:
	40: Safe torque off (STO)
114 and 110 along distributions are like	The STOP function is not triggered, and the drive runs
H1 and H2 closed simultaneously	properly.
	STL1, STL2, or STL3 fault occurred.
	Fault code:
One of H1 and H2 opened, and the	41: Channel H1 exception (STL1)
other closed	42: Channel H2 exception (STL2)
	43: Exception to both channel H1 and H2 (STL3)

E.2 STO channel delay description

The following table describes the trigger and indication delay of the STO channels.

STO mode	STO trigger delay ¹ and indication delay ²
0.70 ()()()	Trigger delay < 10ms;
STO fault: STL1	Indication delay < 280ms
STO fault: STL2	Trigger delay < 10ms;
	Indication delay < 280ms
OTO facility OTI 0	Trigger delay < 10ms;
STO fault: STL3	Indication delay < 280ms
0TO facility 0TO	Trigger delay < 10ms;
STO fault: STO	Indication delay < 100ms

- STO trigger delay: time interval between trigger the STO function and switching off the drive output.
- STO indication delay: Time interval between trigger the STO function and STO output state indication.

E.3 STO function installation checklist

Before installing the STO, check the items described in the following table to ensure that the STO function can be properly used.

ltem		
Ensure that the drive can be run or stopped randomly during commissioning.		
Stop the drive (if it is running), disconnect the input power supply, and isolate the drive		
from the power cable through the switch.		
Check the STO circuit connection according to the circuit diagram.		
Check whether the shielding layer of the STO input cable is connected to the +24 V		
reference ground COM.		
Connect to the power.		
Test the STO function as follows after the motor stops running:		
♦ If the drive is running, send a stop command to it and wait until the shaft of the		
motor stops rotating.		
♦ Activate the STO circuit and send a start command to the drive. Ensure that the		
motor does not start.		
♦ Deactivate the STO circuit.		
Restart the drive, and check whether the motor is running properly.		
Test the STO function as follows when the motor is running:		
Start the drive. Ensure that the motor is running properly.		
♦ Activate the STO circuit.		
♦ The drive reports an STO fault. Ensure that the motor coasts to stop rotating.		
♦ Deactivate the STO circuit.		
Restart the drive, and check whether the motor is running properly.		

Appendix F Further information

F.1 Product and service queries

If you have any queries about the product, contact the local INVT office. Please provide the model and serial number of the product you query about. You can visit www.invt.com to find a list of INVT offices.

F.2 Feedback on INVT VFD manuals

Your comments on our manuals are welcome. Visit www.invt.com, directly contact online service personnel or choose **Contact Us** to obtain contact information.

F.3 Documents on the Internet

You can find manuals and other product documents in the PDF format on the Internet. Visit www.invt.com and choose **Support > Download**.

Service line: 86-755-23535967 E-mail: overseas@invt.com.cn Website: www.invt.com

The products are owned by Shenzhen INVT Electric Co.,Ltd.

Two companies are commissioned to manufacture: (For product code, refer to the 2nd/3rd place of S/N on the name plate.)

Shenzhen INVT Electric Co., Ltd. (origin code: 01)
Address: INVT Guangming Technology Building, Songbai

Address: INVT Guangming Technology Building, Songbai Road, Matian, Guangming District, Shenzhen, China INVT Power Electronics (Suzhou) Co., Ltd. (origin code: 06) Address: 1# Kunlun Mountain Road, Science&Technology Town, Gaoxin District, Suzhou, Jiangsu, China

 Industrial Automation:
 ■HMI
 ■PLC
 ■ VFD
 ■ Servo System

■Elevator Intelligent Control System ■ Rail Transit Traction System

Energy & Power: ■UPS ■DCIM ■Solar Inverter ■SVG

■ New Energy Vehicle Powertrain System ■ New Energy Vehicle Charging System

Thew Energy vehicle is award and cystem

■ New Energy Vehicle Motor

Copyright@ INVT.

Manual information may be subject to change without prior notice.

202503 (V1.3)